Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (11): 801-808    DOI: 10.11901/1005.3093.2019.094
ARTICLES Current Issue | Archive | Adv Search |
Effect of Grain Boundary Morphology and MC on Plastic Deformation Behavior of NiCrFe Weld Metal: Crystal Plasticity Finite Element Analysis
ZHOU Hui1,2,WANG Pei1,2(),LU Shanping1,2()
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

ZHOU Hui,WANG Pei,LU Shanping. Effect of Grain Boundary Morphology and MC on Plastic Deformation Behavior of NiCrFe Weld Metal: Crystal Plasticity Finite Element Analysis. Chinese Journal of Materials Research, 2019, 33(11): 801-808.

Download:  HTML  PDF(3586KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of grain boundary morphology and carbide precipitate on local heterogeneous plastic deformation of a NiCrFe weld metal were investigated by the crystal plasticity finite element method. Results show that the plastic deformation behavior is more homogeneous for the sample with tortuous grain boundaries rather than those with straight grain boundaries, since the tortuous grain boundary can promote the activation of slip systems around it more easily. Owning to the significant differences in the critical resolved shear stress and hardening behavior between the MC carbide and matrix, the carbide has much higher stress and lower strain compared with the matrix. The discontinuous stress distribution at the interface between the carbide and matrix may induce fracture initiation during the deformation. The tortuous grain boundaries and MC precipitates have the opposite effect on the ductility, dipping and cracking of the weld metal. Therefore, it should be tried to obtain the weld metal with tortuous grain boundaries while minimizing MC precipitates for engineering application.

Key words:  metallic materials      ductility dipping cracking      crystal plasticity      grain boundary morphology      MC precipitate     
Received:  02 February 2019     
ZTFLH:  TG404  
Fund: Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2017-1);Key R & D Program of Jiangsu Province(BE2018113)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.094     OR     https://www.cjmr.org/EN/Y2019/V33/I11/801

Fig.1  Tensile engineering stress-strain curve of a smooth NiCrFe weld metal specimen that is used for the determination of the material parameters
Slip systemSlip planeSlip direction
γ1(111)[01ˉ1]
γ2(111)[101ˉ]
γ3(111)[1ˉ10]
γ4(1ˉ11)[101]
γ5(1ˉ11)[110]
γ6(1ˉ11)[01ˉ1]
γ7(11ˉ1)[011]
γ8(11ˉ1)[110]
γ9(11ˉ1)[101ˉ]
γ10(111ˉ)[011]
γ11(111ˉ)[101]
γ12(111ˉ)[1ˉ10]
Table 1  Slip systems used in the crystal plasticity model
ParameterSymbolMatrixMCUnit
Elastic moduliE143000650000MPa
Reference strain rateγ˙(α)0.0010.0011/s
Rate sensitivity parameterm20501
Initial slip resistanceτ053120MPa
Saturation slip resistanceτs225350MPa
Initial hardening modulush0160240MPa
Hardening ratioq111
Table 2  Material parameters of NiCrFe weld metal and MC precipitate that used in crystalline plasticity finite element method
Fig.2  SEM image of the NiCrFe weld metal sample with tortuous grain boundary (a); representative volume element model of specimen with straight grain boundary (b); representative volume element model of specimen with tortuous grain boundary (c) and representative volume element model of specimen with MC precipitates at tortuous grain boundaries (d)
Fig.3  Deformation behaviors of the NiCrFe weld metal specimen with straight grain boundaries after 10% straining (a) von Misses stress distribution, (b) equivalent strain distribution, (c) lattice rotation angle distribution
Fig.4  Deformation behavior of the NiCrFe weld metal specimen with tortuous grain boundaries after 10% straining (a) von Misses stress distribution, (b) equivalent strain distribution, (c) lattice rotation angle distribution
Fig.5  Evolution of activated slip strain at node A (a); node B (b); node C (c) and node D (d) of the NiCrFe weld metal specimens
Fig.6  Deformation behavior of the NiCrFe weld metal specimen with MC precipitates at tortuous grain boundaries after 10% straining (a) Mises stress distribution, (b) equivalent strain distribution, (c) lattice rotation angle distribution
Fig.7  Evolution of activated slip strain at node F (a) and node E (b) of NiCrFe weld metal specimen with MC precipitate at tortuous grain boundaries
[1] Qin R, Wang H, He G. Investigation on the microstructure and ductility-dip cracking susceptibility of the butt weld welded with ENiCrFe-7 nickel-base alloy-covered electrodes [J]. Metal. Mater. Trans., 2014, 46 A: 1227
[2] Mo W, Lu S, Li D, et al. Effects of M23C6 on the high-temperature performance of Ni-based welding material NiCrFe-7 [J]. Metal. Mater. Trans., 2014, 45A: 5114
[3] Mo W, Lu S, Li D, et al. Effects of filler metal composition on the microstructure and mechanical properties for ER NiCrFe-7 multi-pass weldments [J]. Mater. Sci. Eng., 2013, 582A: 326
[4] Kadoi K, Uegaki T, Shinozaki K, et al. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds [J]. Mater. Sci. Eng., 2016, 672A: 59
[5] Mo W, Hu X, Lu S, Li D, et al. Effects of boron on the microstructure, ductility-dip-cracking, and tensile properties for NiCrFe-7 weld metal [J]. J. Mater. Sci. Technol., 2015, 31(12): 1258
[6] Zhang X, Li D Z, Li Y Y, et al. Effect of Nb and Mo on the microstructure, mechanical properties and ductility-dip cracking of Ni-Cr-Fe weld metals [J]. Acta Metall. Sin., (Engl. Let.) 2016, 29(10: 928
[7] Wei X, Xu M, Wang Q, et al. Effect of local texture and precipitation on the ductility dip cracking of ERNiCrFe-7A Ni-based overlay [J]. Mater. Des., 2016, 110: 90
[8] Mo W L, Zhang X, Lu S P, et al. Effect of Nb content on microstructure, welding defects and mechanical properties of NiCrFe-7 weld metal [J]. Acta Metall. Sin., 2015, 51: 230
[8] (莫文林, 张 旭, 陆善平等. Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响 [J]. 金属学报, 2015, 51: 230)
[9] Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal Part I. Ductility and microstructural characterization [J]. Mater. Sci. Eng., 2004, 380A: 259
[10] Nishimoto K, Saida K, Okauchi H. Microcracking in multipass weld metal of alloy 690 Part 1-Microcracking susceptibility in reheated weld metal [J]. Sci. Technol. Weld. Join., 2013, 11(4): 455
[11] Collins M G, Lippold J C. An investigation of ductility dip cracking in Nickel-based filler materials-Part I [J]. Weld. Res., 2003: 288
[12] Lee D J, Kim Y S, Shin Y T, et al. Contribution of precipitate on migrated grain boundaries to ductility-dip cracking in Alloy 625 weld joints [J]. Metal. Mater. Int., 2010, 16(5): 813
[13] Han K, Yoo J, Lee B, et al. Effect of Ni on the hot ductility and hot cracking susceptibility of high Mn austenitic cast steel [J]. Mater. Sci. Eng., 2014, 618A: 295
[14] Jang A Y, Lee D J, Lee S H, et al. Effect of Cr/Ni equivalent ratio on ductility-dip cracking in AISI 316L weld metals [J]. Mater. Des., 2011, 32(1): 371
[15] Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal Part II, Insight into the mechanism for ductility dip cracking [J]. Mater. Sci. Eng., 2004, 380A: 245
[16] Chen J Q, Lu H, Cui W, et al. Effect of grain boundary behaviour on ductility dip cracking mechanism [J]. Mater. Sci. Tech., 2013, 30(10): 1189
[17] Collins M G, Ramirez A J, Lippold J C. An investigation of ductility dip cracking in nickel-based weld metals, Part III [J]. Weld Res., 2004, 83: 39
[18] Torres E A, Montoro F, Righetto R D, et al. Development of high-temperature strain instrumentation for in situ SEM evaluation of ductility dip cracking [J]. J. Micro. 2014, 254(3): 157
[19] Qian D, Xue J, Zhang A, et al. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy [J]. Sci. Rep., 2017, 7(1): 2859
[20] Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
[21] Hill R, Rice J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. J. Mech. Phys. Solids., 1972: 401
[22] Peirce D, Asaro R J, Needleman A. An analysis of noniniform and localized deforamtion in ductile single crystals [J]. Acta Metall., 1982, 30: 1087
[23] Asaro R J. Micromechanics of crystals and polycrystals [J]. Adv. Appl. Mech., 1983, 23: 1
[24] Bassani J L, Wu T. Latent hardening in single crystals II. Analytical characterization and predictions [J]. J. Mech.Phys. Solids., 1991, 14: 95
[25] Peirce D, Asaro R J, Needleman A. Materil rate dependence and localizaed deformation in crystalline solids [J]. Acta Metall., 1983, 31: 1951
[26] Asaro R J. Crystal plasticity [J]. J. Appl. Mech., 1983, 50: 921
[27] Ye C, Chen J, Xu M, et al. Multi-scale simulation of nanoindentation on cast Inconel 718 and NbC precipitate for mechanical properties prediction [J]. Mater. Sci. Eng. A, 2016, 662: 385
[28] Ramirez A J, Sowards J W, Lippold J C. Improving the ductility-dip cracking resistance of Ni-base alloys [J]. J. Mater. Process. Technol., 2006, 179(1-3): 212
[29] Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21(170): 399
[30] Di Gioacchino F, Clegg W J. Mapping deformation in small-scale testing [J]. Acta Mater., 2014, 78: 103
[31] Gao H, Huang Y. Geometrically necessary dislocation and size dependent plasticity [J]. Scr. Mater., 2003, 48: 113
[32] Hua C, Lu H, Yu C, et al. Reduction of ductility-dip cracking susceptibility by ultrasonic-assisted GTAW [J]. J. Mater. Process. Technol., 2017, 239: 240
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!