Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (10): 735-741    DOI: 10.11901/1005.3093.2018.632
ARTICLES Current Issue | Archive | Adv Search |
Mechanism of Fatigue Life Enhancement for 1240 MPaHi-lock Bolt of Ti-38644 Ti-alloy
ZHAO Qingyun(),CHENG Sirui,HUANG Hong
AVIC Manufacturing Technology Institute, Beijing 100024, China
Cite this article: 

ZHAO Qingyun,CHENG Sirui,HUANG Hong. Mechanism of Fatigue Life Enhancement for 1240 MPaHi-lock Bolt of Ti-38644 Ti-alloy. Chinese Journal of Materials Research, 2019, 33(10): 735-741.

Download:  HTML  PDF(6872KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The tension-tension fatigue fracture for Hi-lock bolts of Ti-38644 high strength Ti-alloy has been investigated using SEM and EDS in order to reveal the microscopic characteristics of crack initiation and crack propagation, as well as the mechanism related with fatigue life enhancement. The fatigue fracture zone for Hi-lock bolt of Ti-38644 Ti-alloy can be divided into three parts: fatigue crack initiation zone, crack propagation zone and instant break zone. The fatigue cracks initiate from the surface of weak part under the bolt head, then radially propagate in matrix. The sizes of fatigue cracks display a transition from microscopic to macroscopic, once in the propagation zone. The fatigue band extension becomes the main mechanism, meanwhile, the typical features of cleavage fracture can be observed. The fatigue life for Hi-lock bolt of Ti-38644 Ti-alloy is significantly affected by deformation layer at the fillet, which may enhance the fatigue life-time for the Hi-lock bolts of Ti-38644 Ti-alloy with such deformation layer. The mechanism of strengthen anti fatigue has also been discussed by comparing the microstructure observation data and fatigue test results from different Hi-lock bolts of Ti-38644 Ti-alloy.

Key words:  metallic materials      Ti-38644      high strength Ti-alloy      fatigue fracture      mechanism of fatigue life enhancement      Hi-lock bolt      fracture morphology     
Received:  30 October 2018     
ZTFLH:  TG114  
  TG146.2  
  TG376.3  
  V262.3  
Fund: AVIC Manufacturing Technology Institute Foundation(KS911309115)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.632     OR     https://www.cjmr.org/EN/Y2019/V33/I10/735

Fig.1  Microstructure of Ti-38644 alloy in annealing state (a) OM; (b) SEM
Fig.2  Picture of 1240 MPa Hi-bolt
Fig.3  Failure Sample of Hi-bolt after fatigue test (a) Hi-bolt with extrusion strengthening; (b) Hi-bolt without extrusion strengthening
Fig.4  SEM microstructure of Ti-38644 Hi-bolt (a) microstructure; (b) β transformation matrix
Fig.5  Fracture morphology of tension fatigue for Ti-38644 Hi-bolt (a) fatigue fracture of Hi-bolt with extrusion strengthening; (b) fatigue fracture of Hi-bolt without extrusion strengthening; (c) crack source and fatigue striation around the edge of Hi-bolt; (d) dimples at quasi-cleavage fracture; (e) morphology offinal fracture zone
Fig.6  Microstructures of the Hi-bolts at the fracture (a) Hi-bolt without extrusion process; (b) Hi-bolt under extrusion process
Fig.7  EDS analysis of fatigue fracture for the strengthen Hi-bolt (a) test position; (b) the results of EDS analysis
Fig.8  Dislocation structure of fatigue samples (a) dislocation tangles; (b) stacking faults; (c) planar dislocation array; (d) dislocation in α and β
Fig.9  Schematic diagram of fatigue enhancement mechanism for Ti-38644 Hi-bolt
[1] Zeng L, Haylock L, Fanning J ,et al. Evaluation of newly developed Ti-555 high-strength titanium fasteners [J]. www.alcoa.com
[2] Fanning J, Zeng L, Nyakana S ,et al. Properties and microstructures of Ti-555(Ti-5Al-5Mo-5V-3Cr-0.6Fe) for fasteners [J]. Ti-2007 Science and Technology, 2007, 1263
[3] Fanning J. Properties of TIMETAL 555 (Ti-5Al-5Mo-5V-3Cr-0.6Fe) [J]. Journal of Materials Engineering and Performance, 2005,14(6): 788
[4] Technologies SPS. New SPS TitanTM titanium fasteners for high performance racing [J]. www.SPS.com.
[5] Pang X C, Bai M Y. Fracture analysis of titanium alloy bolt [J]. Failure Analysis and Prevention, 2011, 6(3): 182
[5] 庞小超, 白明远.钛合金螺栓断裂原因分析 [J]. 失效分析与预防, 2011, 6(3): 182
[6] Gao Y K. Influence of shot peening on tension-tension fatigue properties in Ti-10V-2Fe-3Al titanium alloy [J]. The Chinese Journal of Nonferrous Metals, 2004, 14(1): 60
[6] 高玉魁. 喷丸对Ti-10V-2Fe-3Al钛合金拉拉疲劳性能的影响 [J]. 中国有色金属学报, 2004, 14(1): 60
[7] Chen J D, Liu Y, Tian F G, et al. The analysis of processes and the development of NC machine for rolling rounds of bolts[J], Manufactuing Automation, 2011, 33(12) : 72-75.
[7] 陈家兑, 刘 勇, 田丰果等. 螺栓圆角滚压工艺分析及数控圆角滚压机研制 [J]. 制造业自动化, 2011, 33(12): 72
[8] Yu S F, Wang Z Q, Liu F Z. The cool-rolling equipment for making round of high-strength bolts [J]. Aviation Maintenance & Engineering, 1997, (5): 24
[8] 余述凡, 王自勤, 刘凤章. 高强度螺栓圆角冷挤机 [J]. 航空制造工程, 1997, (5): 24
[9] Chen W, Sun Q Y, Xiao L ,et al. Effect of duplex aging on low cycle fatigue behavior in Ti-10V-2Fe-3Al alloy [J]. Rare Metal Materials and Engineering, 2012, 41(11): 1911
[9] 陈 威, 孙巧艳, 肖 林等. 双重时效对Ti1023合金低周疲劳行为的影响 [J]. 稀有金属材料与工程, 2012, 41(11): 1911
[10] Zhan X D, Zhang X Y, Li S J, et al. Critical conditions of α lamellar crushing during hot deformation in Ti-55531 near-β titanium alloy [J]. Material Science and Engineering of Powder Metallugy, 2016, 21(5): 665
[10] 詹孝冬, 张晓泳, 李少君等. Ti-55531近β钛合金中针片α组织破碎的临界变形条件 [J]. 粉末冶金材料科学与工程, 2016, 21(5): 665
[11] Zhang Z J, Zhang P, Li L L,et al. Fatigue cracking at twin boundaries: Effects of crystallographic orientation and stacking fault energy [J]. Acta Materialia, 2012, 60(6-7): 3113
[12] Huang J, Wang Z R, Zhou J. Cyclic deformation response of β -annealed Ti-5Al-5V-5Mo-3Cr alloy under compressive loading conditions [J]. Metallurgical and Materials Transactions A, 2011, 42(9): 2868
[13] Bantounas I, Dye D, Lindley T C. The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue [J]. Acta Materialia, 2010, 58(11): 3908
[14] Bantounas I, Dye D, Lindley T C. The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V [J]. Acta Materialia, 2009, 57(12): 3584
[15] Yang D M, Zhu X. Mechanical Properties and Failure Analysis of metals [M]. Beijing: Metallurgical Industry Press, 1991, 313.
[15] 杨道明, 朱 勋. 金属力学性能与失效分析 [M]. 北京: 冶金工业出版社, 1991, 313
[16] Qin D, Lu Y, Liu Q ,et al. Transgranular shearing introduced brittlement of Ti-5Al-5V-5Mo-3Cr alloy with full lamellar structure at room temperature [J]. Materials Science Engineering A, 2013, 572(11): 19
[17] Zhong Q P, Tian Y J. Failure Analysis Basis [M]. Beijing: China Machine Press, 1990, 326
[17] 钟群鹏, 田永江. 失效分析基础知识 [M]. 北京: 机械工业出版社, 1990, 326
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!