Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (1): 27-33    DOI: 10.11901/1005.3093.2018.436
ARTICLES Current Issue | Archive | Adv Search |
Microstructures and Mechanical Properties of Ti-Nb-Zr Alloys with Low Electron-to-Atom Ratio
Honglei ZHOU1,Fengqi HOU2,3,Yulin HAO3()
1. College of Physics, Jilin University, Changchun 130012, China
2. Western Superconducting Technologies Co., Ltd., Xi'an 710021, China
3. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Honglei ZHOU,Fengqi HOU,Yulin HAO. Microstructures and Mechanical Properties of Ti-Nb-Zr Alloys with Low Electron-to-Atom Ratio. Chinese Journal of Materials Research, 2019, 33(1): 27-33.

Download:  HTML  PDF(4762KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and mechanical property were investigated for Ti-Nb-Zr Ti-alloys with varying contents of (24~30)Nb and (8~12 mass fraction%)Zr. The results show that the increase of Nb- and Zr-content is favorable for suppressing α" martensite- and ω phase- formation, while the alloys composed of single β phase can be obtained as their electron-to-atom ratio higher than about 4.19, which is much less than the ratio 4.24 for Ti-Nb binary alloys. The Ti-30Nb-(8~12)Zr alloys of single β phase exhibit low Young's modulus of about 62 GPa and high strength-to-modulus of about 0.9%, which imply that these alloys possess superior biomechanical compatibility rather than Ti-Nb binary alloys.

Key words:  metallic materials      Ti-Nb-Zr alloy      microstructure      phase transformation      elastic modulus      strength     
Received:  05 July 2018     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51071152)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.436     OR     https://www.cjmr.org/EN/Y2019/V33/I1/27

Nominal

composition

NbZre/a
Mass fraction/%Atom fraction/%Mass fraction/%Atom fraction/%
Ti-24Nb-8Zr2414.685.04.146
Ti-24Nb-10Zr2414.8106.34.148
Ti-24Nb-12Zr2415.0127.64.150
Ti-26Nb-8Zr2616.085.04.160
Ti-26Nb-10Zr2616.2106.44.162
Ti-26Nb-12Zr2616.4127.74.164
Ti-28Nb-8Zr2817.585.14.175
Ti-28Nb-10Zr2817.7106.44.177
Ti-28Nb-12Zr2817.9127.84.179
Ti-30Nb-8Zr3018.985.14.189
Ti-30Nb-10Zr3019.2106.54.192
Ti-30Nb-12Zr3019.4127.94.194
Table 1  The nominal compositions and their e/a ratios of Ti-Nb-Zr alloys
Fig.1  Optical microstructures of the solution treated Ti-xNb-10Zr alloys: x=24 (a), 26 (b), 28 (c), 30 (d)
Fig.2  XRD profiles of the solution treated Ti-xNb-12Zr alloys: (1) x=24, (2) x=26, (3) x=28, (4) x=30
Fig.3  X-ray diffraction profiles of the solution treated Ti-28Nb-xZr alloys: (1) x=8, (2) x=10, (3) x=12
Fig.4  TEM morphology of the solution-treated Ti-26Nb-8Zr (a, b) and Ti-26Nb-12Zr (c, d) alloys
Fig.5  TEM morphology and diffraction patterns of the solution-treated Ti-28Nb-8Zr (a) and Ti-28Nb-10Zr (b) alloys
Ti-24NbTi-26NbTi-28NbTi-30Nb
8Zrα"ωβα"ωβα"ωββ
10Zrα"ωβα"ωβα"ββ
12Zrα"ωβα"ωβββ
Table 2  Phase constitutions of the solution-treated Ti-Nb-Zr alloys
Fig.6  Stress displacement curves of the solution-treated Ti-(24-30)Nb-(8-12)Zr alloys: (a) Ti-24Nb-xZr; (b) Ti-26Nb-xZr; (c) Ti-28Nb-xZr; (d) Ti-30Nb-xZr
Fig.7  Tensile strength (a) , Young's modulus (b) and strength-modulus ratio (c) of the solution-treated Ti-Nb-Zr alloys: (1) Ti-24Nb-xZr;(2) Ti-26Nb-xZr;(3) Ti-28Nb-xZr;(4) Ti-30Nb-xZr
1 ParkJ B, LakesR S. Biomaterials: an introduction (2nd ed.) [M]. New York: Plenum Press, 1992
2 LongM, RackH J. Review: titanium alloys in total joint replacement-a materials science perspective [J]. Biomaterials, 1998, 19(18): 1621
3 WangK. The use of titanium for medical application in the USA [J]. Mater. Sci. Eng. A, 1996, 213(1-2): 134
4 HaoY L, NiinomiM, KurodaD, et al. Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite [J]. Metall. Mater. Trans. A, 2002, 33(10): 3137
5 YangY, LiG P, WuS Q, et al. Progress in research of Gum Metal [J]. Chinese Journal of Materials Research, 2011, 25(1): 1
5 杨义, 李阁平, 吴松全等. Gum Metal钛合金研究进展 [J]. 材料研究学报, 2011, 25(1): 1)
6 GeX N, ZhuD C, FengZ M. A new beta titanium alloy of low elastic modulus [J]. Chinese Journal of Materials Research, 2011, 25(4): 369
6 葛向南, 朱达川, 冯作明. 低弹性模量β钛合金的制备和性能 [J]. 材料研究学报, 2011, 25(4): 369)
7 HaoY L, LiS J, SunS Y, et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys [J]. Mater. Sci. Eng. A, 2006, 441(1-2): 112
8 Abdel-HadyM, FuwaH, HinoshitaK, et al. Phase stability change with Zr content in Ti-Nb alloys [J]. Scr. Mater., 2007, 57(11): 1000
9 HaoY L, LiS J, SunS Y, et al. Super-elastic titanium alloy with unstable plastic deformation [J]. Appl. Phys. Lett., 2005, 87(9): 090916
10 HaoY L, LiS J, SunS Y, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications [J]. Acta Biomater., 2007, 3(2): 277
11 HaoY L, LiS J, SunB B, et al. Ductile titanium alloy with low poisson’s ratio [J]. Phys. Rev. Lett., 2007, 98(21): 216405
12 CuiJ P, HaoY L, LiS J, et al. Reversible movement of homogenously nucleated dislocations in a β-titanium alloy [J]. Phys. Rev. Lett., 2009, 102(4): 045503
13 HaoY L, LiS J, PrimaF, et al. Controlling reversible martensitic transformation in titanium alloys with high strength and low elastic modulus [J]. Scr. Mater., 2012, 67(5): 487
14 HaoY L, WangH L, LiT, et al. Superelasticity and tunable thermal expansion across a wide temperature range [J].J. Mater. Sci. & Tech., 2016, 32(8): 705
15 WangH L, HaoY L, HeS Y, et al. Tracing the coupled atomic shear and shuffle for a cubic and a hexagonal crystal transition [J]. Scr. Mater., 2017, 133: 70
16 WangH L, HaoY L, HeS Y, et al. Elastically confined martensitic transformation at the nanoscale in a multifunctional titanium alloy [J]. Acta Mater., 2017, 135: 330
17 ZhangJ R, ShahS A A, HaoY L, et al. Weak notch sensitivity in a biomedical titanium alloy exhibiting nonlinear elasticity [J]. Sci. China Mater., 2018, 61(4): 537
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!