Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (1): 34-42    DOI: 10.11901/1005.3093.2018.296
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Erosion Performance for Co-continuous Phase Composites of Si3N4/1Cr18Ni9Ti
Qi DU1,2,Yong GAO1,Zhiheng REN1,3,Xiaoming CAO1,Chao WANG1,Jinsong ZHANG1()
1. Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. Liaoning ZhuoYi New Materials Corporation, Yingkou 115004, China
Cite this article: 

Qi DU,Yong GAO,Zhiheng REN,Xiaoming CAO,Chao WANG,Jinsong ZHANG. Preparation and Erosion Performance for Co-continuous Phase Composites of Si3N4/1Cr18Ni9Ti. Chinese Journal of Materials Research, 2019, 33(1): 34-42.

Download:  HTML  PDF(15459KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composites with co-continuous structure of Si3N4/1Cr18Ni9Ti were prepared via a two-step process, namely gel casting and pressure casting. The phase composition, macro- and micro-structure of the composites were characterized. The erosion rate in flow slurry composed of water and quartz sand, as a function of impingement angle, flow velocity, sand content and erosion time was assessed in comparison with the plain 1Cr18Ni9Ti. Results show that Si3N4/1Cr18Ni9Ti composites exhibited a perfect co-continuous phase structure with a good combination between Si3N4 and 1Cr18Ni9Ti; the fluctuation of erosion rate as a function of impingement angle of this composites is smaller than that of 1Cr18Ni9Ti; the erosion rate of composites has an exponent relationship with flow velocity (EV 0.67), while there is a linear relationship between the erosion rate and flow velocity for 1Cr18Ni9Ti; the erosion rate of this composites decreases gradually with the increasing erosion time and then stabilizes, while that of 1Cr18Ni9Ti is hardly changed; There is a linear relationship between the erosion rate and sand content in the slurry for the two materials. The composite with co-continuous structure of Si3N4/1Cr18Ni9Ti exhibits superior erosion resistance, in contrast with the plain 1Cr18Ni9Ti steel.

Key words:  composite      co-continuous phase      slurry erosion      1Cr18Ni9Ti      foam ceramic     
Received:  26 April 2018     
ZTFLH:  TB333  
Fund: National Key Research and Development Program of China(2017YFB0310405)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.296     OR     https://www.cjmr.org/EN/Y2019/V33/I1/34

Fig.1  Sketch of the slurry erosion equipment (a) rotating disk equipment 1-motor, 2-container, 3-disc, 4-baffle, 5-specimen holder, 6-circulating water pipe, 7-cooling bath, 8-circulating pump, 9-holder, 10-jack (b) spacemen holder in (a) 1-nylon holder, 2- location bolt, 3-specimen, 4-disc, 5-junk ring, 6-specimen holder
Fig.2  XRD pattern of Si3N4 foam ceramic
Fig.3  Morphology of Si3N4 foam ceramic (a) macro image, (b) skeleton zone, (c) micro image
Fig.4  Morphology of Si3N4/1Cr18Ni9Ti co-continuous composites (a) macro image, (b) ceramic skeleton zone, (c) BSD of interface zone
PointsCNAlSiCrMnFeNi
1(Fe based solid solution)------6.789.992.3872.47--
2(Si3N4)--33.072.2064.27----0.46--
3(CrN)--19.790.421.2774.87--3.64--
4(Fe based solid solution)------7.1612.953.9665.1610.77
5(Fe based solid solution)7.26----1.6515.912.3665.377.46
Table 1  Main element compositions in different micro-areas in Fig.3c (%, mass fraction)
Fig.5  Relationship between the erosion rate and impingement angle
Fig.6  Relationship between the erosion rate and flow velocity
Fig.7  SEM and 3D surface images of 1Cr18Ni9Ti and Composites after erosion (a) SEM images of 1Cr18Ni9Ti, (b) SEM images of composites, (c) 3D surface images of 1Cr18Ni9Ti, (d) 3D surface images of composites
Fig.8  Relationship between the erosion rate and sand content
Fig.9  Comparison of slurry erosion resistance between 1Cr18Ni9Ti, Si3N4/1Cr18Ni9Ti co-continuous composites and Si3N4 ceramic
Fig.10  Height difference of composite before and after erosion (a) Si3N4 area, (b) 1Cr18Ni9Ti area
Fig.11  Erosion mechanism of Si3N4/1Cr18Ni9Ti co-continuous composites (a) 8 h, (b) 16 h, (c) 24 h, (d) 32 h
1 DaehnG S, BreslinM C. Co-continuous composite materials for friction and braking applications [J]. JOM, 2006, 58(11): 87
2 AgrawalP, SunC T. Fracture in metal-ceramic composites [J]. Composites Science and Technology, 2004, 64(9): 1167
3 JiangL, JiangY L, YuL, et al. Experimental study and numerical analysis on dry friction and wear performance of co-continuous SiC/Fe-40Cr against SiC/2618Al alloy composites [J]. Trans. Nonferrous Met. Soc. China, 2012, 22(12): 2913
4 LiuJ, BinnerJ, HigginsonR. Dry sliding wear behaviour of co-continuous ceramic foam/aluminium alloy interpenetrating composites produced by pressureless infiltration [J]. Wear, 2012, 276: 94
5 WangG C. Study on erosion wear mechanism and law of impeller in centrifugal compressor [D]. Jinan: Shandong University, 2015
5 王光存. 离心压缩机叶轮冲蚀磨损机理和规律的研究 [D]. 济南: 山东大学, 2015
6 DasS, MondalD P, ModiO P, et al. Influence of experimental parameters on the erosive-corrosive wear of Al-SiC particle composite [J]. Wear, 1999, 231(2): 195
7 TuJ P, PanJ, MatsumuraM, et al. The solid particle erosion behavior of Al18B4O33 whisker-reinforced AC4C al alloy matrix composites [J]. Wear, 1998, 223(1-2): 22
8 BagciM, ImrekH. Solid particle erosion behaviour of glass fibre reinforced boric acid filled epoxy resin composites [J]. Tribology International, 2011, 44(12): 1704
9 RenZ H, ZhengY G, JiangC H, et al. Erosive behaviors of SiC foam/epoxy co-continuous phase composites [J]. Wear, 2015, 336: 21
10 LiJ Q, XieS H, ZhuangY H, et al. Fabrication and application of co-continuous Al2O3/Al composite by reactive infiltration of molten Al into the preform of SiO2 with cordierite addition [J]. Z Metallkd, 2004, 95(12): 1128
11 HanJ J, LvZ L. Effect of alloy elements on the corrosion erosion wear behavior of ductile cast iron [J]. Foundry Technology, 2007, 28(7): 922
11 韩进军, 吕振林. 合金元素对球墨铸铁冲蚀腐蚀磨损特性的影响 [J]. 铸造技术, 2007, 28(7): 922)
12 RenZ H, JinP, CaoX M, et al. Preparation and performance of SiC foam ceramic/Fe matrix co-continuous phase composites [J]. Chinese Journal of Materials Research, 2014, 28(11): 814
12 任志恒, 金鹏, 曹小明等. SiC泡沫陶瓷/Fe基双连续相复合材料的制备和性能 [J]. 材料研究学报, 2014, 28(11): 814))
13 YuL, WangC A, DongW, et al. Preparation and properties of high strength porous Si3N4 Ceramics [J]. Rare Metal Materials and Engineering, 2011, 40(A01): 547
13 尉磊, 汪长安, 董薇等. 高强度多孔氮化硅陶瓷的制备及性能研究 [J]. 稀有金属材料与工程, 2011, 40(A01): 547)
14 LuS Y. Introduction to Stainless Steel [M]. Beijing: China Sci. and Tech. press, 2007
14 陆世英. 不锈钢概论 [M]. 北京: 中国科学技术出版社, 2007
15 YangX J. Fabrication and properties of porous silicon nitride and silicon nitride based composites via gel-casting [D]. Chang sha: University of Defense Technology, 2015
15 杨雪金. 凝胶注模制备多孔氮化硅及其复相陶瓷透波材料的研究 [D]. 长沙: 国防科学技术大学, 2015
16 WangH J, YuJ L, ZhangJ, et al. A method of preparation of Si3N4 porous ceramics by gelcasting [P]. China, CN101503298, 2009
16 王红洁, 余娟丽, 张健等. 一种利用凝胶注模法制备氮化硅多孔陶瓷的方法 [P]. 中国, CN101503298, 2009
17 PanH T, LvM. Analysis of the Steelmaking Characteristics of medium frequency induction furnace [J]. Industrial Heating, 2015, 44(01): 18
17 潘宏涛, 吕明. 中频感应炉的炼钢特性分析 [J]. 工业加热, 2015, 44(01): 18)
18 FengH K. Research on preparation and properties fo porous silicon nitride ceramics [D]. Zhen jiang: Jiang Su University, 2016
18 冯厚坤. 多孔氮化硅陶瓷的制备及其性能的研究 [D]. 镇江: 江苏大学, 2016
19 LiuG X. Preparation of silicon-nitride based porous ceramic [D]. Kun ming: Kunming University of Science and Technology, 2003
19 刘国玺. 氮化硅基多孔陶瓷材料的制备 [D]. 昆明: 昆明理工大学, 2003
20 BellmanR, LevyA. Erosion mechanism in ductile metals [J]. Wear, 1981, 70(1): 1
21 LiuR H. The optimal selection of wear resistant materials for powder pipe transportation by investigating their blasting erosion behaviors [D]. Shenyang: Chinese Academy of Science, 2005
21 刘荣华. 粉料输送管道用材的冲蚀行为及优选研究 [D]. 沈阳: 中国科学院大学, 2005
22 LiS Z, DongX L. Erosion wear and fretting wear of materials [M]. Beijing: China Machine Press, 1987
22 李诗卓, 董祥林. 材料的冲蚀磨损与微动磨损 [M]. 北京: 机械工业出版社, 1987
23 HussainovaI, KübarseppJ, ShcheglovI. Investigation of impact of solid particles against hardmetal and cermet targets [J]. Tribology international, 1999, 32(6): 337
24 RenZ H. Study of the preparation and characteristics of SiC foam ceramic/epoxy co-continuous phase composites [D]. Shenyang: Chinese Academy of Science, 2015
24 任志恒. SiC泡沫陶瓷/树脂双连续相复合材料的制备与性能研究 [D]. 沈阳: 中国科学院大学, 2015
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!