Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (7): 481-486    DOI: 10.11901/1005.3093.2017.188
ARTICLES Current Issue | Archive | Adv Search |
Martensite Transformation Plasticity and Influence of Stress on Phase Transformation Kinetics of Cr5 Steel
Ge WANG1, Yajie WANG1, Lei LI1, Zhanshan MA1, Juntai HU1, Bowei CHEN1, Qiang LI1,2()
1 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
2 College of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
Cite this article: 

Ge WANG, Yajie WANG, Lei LI, Zhanshan MA, Juntai HU, Bowei CHEN, Qiang LI. Martensite Transformation Plasticity and Influence of Stress on Phase Transformation Kinetics of Cr5 Steel. Chinese Journal of Materials Research, 2018, 32(7): 481-486.

Download:  HTML  PDF(1685KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The martensitic transformation plasticity and effect of stress on the martensitic transformation kinetics were investigated by means of dilatometric experiments under different applied tensile and compressive stress on Cr5 steel used for backup rolls. Results show that the martensitic transformation coefficient α of Cr5 steel is almost the same under different stress, in other word, the influence of stress is negligible; Besides, the martensitic transformation coefficient α decreases with the increasing temperature, the relation of which with temperature can be described approximately as a cubic polynomial. The martensite transformation point (MS) increases with the increasing equivalent stress. The k-values of transformation plasticity coefficient under different stress may be acquired as ca 4.32×10-5 according to the Greenwood-Johnson equation.

Key words:  metallic materials      martensitic transformation      transformation kinetics      transformation plasticity      Cr5 steel     
Received:  15 March 2017     
ZTFLH:  TB31  
  TG151.2  
Fund: Supported by Natural Science Foundation of Hebei Province (No. E2016203119) and Heavy Machinery Collaborative Innovation Project of Yanshan University (No. ZX01-20140100-03)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.188     OR     https://www.cjmr.org/EN/Y2018/V32/I7/481

C Si Mn Cr Mo V Ni
0.52 0.54 0.45 4.57 0.47 0.12 0.42
Table 1  Chemical composition of Cr5 steel (mass fraction,%)
Fig.1  Specimen for experiment (unit: mm)
Fig.2  Testing process
Fig.3  Dilatometric curves during martensitic transformation under different stress
Fig.4  Dilatometric curves during martensitic transformation with no load
Fig.5  Martensitic transformation kinetic coefficient α under no load
Fig.6  Relationship between volume fraction of martensite and transformation temperature under no load
Fig.7  Martensitic transformation kinetic coefficient α under different stress
Fig.8  Relationship between the starting point of martensite transformation and the stress
T/℃ 20 100 200 300 400 700 900
E/GPa 215 188 197 189 184 93.3 41.7
Table 2  Elastic modulus of Cr5 steel at different temperatures
Stress/MPa -100 -80 -60 -40 -20 0
βσ0 0.0120443308 0.0114757861 0.0109790378 0.0105425288 0.0100508532 0.0096261686
εtp -4.5556×10-3 -3.4749×10-3 -2.5375×10-3 -1.7206×10-3 -8.4937×10-4
k 4.5556×10-5 4.3437×10-5 4.2292×10-5 4.3014×10-5 4.2468×10-5
Stress/MPa 100 80 60 40 20
βσ0 0.0073438457 0.0076864351 0.0082743886 0.0086972753 0.0091560737
εtp 4.2843×10-3 3.4248×10-3 2.5353×10-3 1.7456×10-3 8.8412×10-4
k 4.2843×10-5 4.281×10-5 4.2256×10-5 4.3641×10-5 4.4206×10-5
Table 3  Transformation strain and transformation plasticity of martensite under different stresses
Fig.9  Transformation plasticity coefficient k under different stress
[1] Zhao X C.Research on Cr5-type forged steel for backup roll, rare metal materials and engineering[J]. Heat Treatment of Metal 2006, 36(7): 26(赵席春. Cr5型支承辊用钢的研究[J]. 金属热处理, 2006, 36(7): 26)
[2] Yuan Y S, Wang W Y, Yuan S,et al.The influence of quenching temperature on the microstructure and friction and wear properties of Cr5 bearing roller[J]. Journal of Materials and Heat Treament, 2015, 36(7): 69(元亚莎, 王文焱, 元莎等. 淬火温度对Cr5支承辊用钢组织和摩擦磨损性能影响[J]. 材料热处理学报, 2015, 36(7): 69
[3] Shi W, Fan H T, Liu Z, Phase transformation plasticity of mart- ensitic transformation in steel for Cr5 support roll[J]. Journal of Materials and Heat Treatment, 2006, 27(5): 122(石伟, 范洪涛, 刘庄. Cr5支承辊用钢马氏体相变的相变塑性研究[J]. 材料热处理学报, 2006, 27(5): 122)
[4] Coret M, Calloch S, Combescure A.Experimental study of the phase transformation plasticity of 16MND5 low carbon steel under multiaxial loading[J]. International Journal of Plasticity, 2002, 26(18): 1707
[5] Taleb L, Petit S.New investigations on transformation induced plasticity and its interaction with classical plasticity[J]. International Journal of Plasticity, 2006, 22(1): 110
[6] Liu C C.Experimental research and numerical simulation on quenching process of large forgings [D]. Beijing: Tsinghua Univers- ity Department of Mechanical Engineering, 1999(刘春成. 大型锻件淬火过程的试验研究和数值模拟 [D]. 北京:清华大学机械工程系, 1999)
[7] Liu Z, Wu X J, et al.Numerical Simulation of Heat Treatment Process [M]. Beijing: Science Press, 1996(刘庄,吴肇基等. 热处理过程的数值模拟 [M]. 北京: 科学出版社, 1996)
[8] Li Y J, Pan J S, et al.Martensitic phase transformation plastic- ity and its application in numerical simulation of quenching[J]. Journal of Shanghai Jiaotong University, 2001, 35(3): 352(李勇军, 潘健生等. 马氏体相变塑性及其在淬火数值模拟中的应用[J]. 上海交通大学学报, 2001, 35(3): 352
[9] Denis S, Gautier E, Simon A,Beck G, Stress-phase transforma- tion interactions-basic principles, modeling and calculation of internal stress[J]. Material Science and Technology, 1985, 1(10): 805
[10] Denis S,Sjostrom S,Simon A, Coupled temperature,stress,phase-transformation calculation model numerical illustration of the internal stress evolution during cooling of a eutectoid carbon steel cylinder[J]. Metallurgical Transaction, 1987, 18(7): 1203
[11] Liu C C, Yao K F, Gao G F, et al.Stress and strain of martensite transformation kinetics and transformation plasticity[J]. Acta Metallurgica Sinica, 1999, 35(11): 1125(刘春成, 姚可夫, 高国峰等. 应力应变对马氏体相变动力学及相变塑性影响的研究[J]. 金属学报, 1999, 35(11): 1125)
[12] Rammerstorfer F G, Fischer D F, Mitter W, et al.On thermo-elastic-plastic analysis of heat treatment processes including creep and phase changes[J]. Computers & Structures, 1981, 13(5-6): 771
[13] Luo F, Han L F, Gu J F, et al.3Cr2Mo steel, martensitic tra- nsformation plasticity and stress effect on the kinetics of phase transformation[J]. Heat Treatment of Materials Journal, 2011, 32(6): 98(罗芳, 韩利战, 顾剑锋等. 3Cr2Mo钢马氏体相变塑性及应力对其相变动力学的影响[J]. 材料热处理学报, 2011, 32(6): 98)
[14] Koisten D P, Marburger R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgica, 1959, 7(1): 59
[15] Greenwood G W, Johnson R H.The deformation of metals under small stresses during phase transformations[J]. Proceedings of the Royal Society A . 1965, 283(1394): 403
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!