Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (4): 241-246    DOI: 10.11901/1005.3093.2017.421
ARTICLES Current Issue | Archive | Adv Search |
Protection Performance of Double-wall Structure of Al-plate Subjected to Impact Effect of High Velocity Projectiles Based on Kinetic Energy Dissipation
Gongshun GUAN1(), Xunyang DAI1, Heshi GUAN2
1 Department of Astronautics Engineering, Harbin Institute of Technology, Harbin 150080, China
2 School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150080, China;
Cite this article: 

Gongshun GUAN, Xunyang DAI, Heshi GUAN. Protection Performance of Double-wall Structure of Al-plate Subjected to Impact Effect of High Velocity Projectiles Based on Kinetic Energy Dissipation. Chinese Journal of Materials Research, 2018, 32(4): 241-246.

Download:  HTML  PDF(800KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By analyzing characteristics of the kinetic energy consumption of single Al-plate and double-wall structure of Al-plate, which were just subjected to dynamic impact effect of an Al-sphere, the protection performance of the double-wall structure against the impact effect of high velocity projectiles is investigated in terms of the critical impact kinetic energy for the failure of the single Al-plate by the impact conditions that the projectile sphere was broken or not when it hit. Meanwhile, the experimental verification of the protection performance of the typical protective structures is carried out. Results show that the critical impact kinetic energy causing the single Al-plate to failure is approximately constant for a certain thickness of the plates. After penetrating the first wall, the residual kinetic energy of the projectile is proportionally reduced from the initial impact kinetic energy for the case of double-wall structure of Al-plate. In the range of impact velocities corresponding to the occurrence of shot fragments, the greater in diameter of the subsequent projectile fragment might cause the perforation failure of the rear wall of the double-wall structure of Al-plate, thus which should possessed the greater proportion of the sum residual kinetic energy of the total fragments in the secondary debris cloud.

Key words:  metallic materials      double-wall structure      high velocity impact      critical kinetic energy      protection performance     
Received:  08 July 2017     
Fund: Supported by National Natural Science Foundation of China (No. 11172083)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.421     OR     https://www.cjmr.org/EN/Y2018/V32/I4/241

Fig.1  Relationship between νr and ν0
dp
/mm
tb
/mm
ν0
/km·s-1
νr1
/km·s-1
νr2
/km·s-1
δr
/%
6.35 1.27 0.84 0.77 0.76 -1.30
6.35 1.27 2.61 2.44 2.36 -3.28
6.35 1.27 0.85 0.77 0.77 0
6.35 1.27 2.62 2.45 2.37 -3.27
9.53 1.27 2.39 2.31 2.24 -3.03
Table 1  Comparison between the calculated results and the experimental results of the residual velocity
dp
/mm
νc1
/km·s-1
νc2
/km·s-1
δc
/%
3.18 2.31 2.39 3.46
3.97 1.59 1.61 1.26
4.76 1.22 1.19 -2.46
Table 2  Comparison between the calculated results and the experimental results of the ballistics limit velocity
Fig.2  Relationship between νc and dp in the range of ballistic impact velocity
dp/mm νc/km·s-1 Eb1/J δb1/% Eb2/J δb2/%
3.18 3.50 35.14 -43.75 64.85 3.81
3.97 4.68 33.94 -45.67 61.69 -1.25
4.76 5.75 34.50 -44.77 62.68 0.34
Table 3  Calculated results of the limit impact kinetic energy
Fig.3  Relationship between Eh and ν0 in the shatter range
Fig.4  Relationship between Ee/Eh and v0 in the shatter range
[1] Zhu Y L.Current space debris environment[J]. Chin. Space Sci. Technol., 1996, (6): 19(朱毅麟. 空间碎片环境近况[J]. 中国空间科学技术, 1996, (6): 19)
[2] Klinkrad H.Collision risk analysis for low Earth orbits[J]. Adv. Space Res., 1993, 13: 177
[3] Guan G S, Li H J, Liu J H, et al.Investigation into damage of woven stuffed shield impacted by high-velocity nonmetallic projectile[J]. Chin. J. Mater. Res., 2016, 30: 329(管公顺, 李航杰, 刘家赫等. 非金属弹丸高速撞击编织物填充式结构的损伤[J]. 材料研究学报, 2016, 30: 329)
[4] Miller J E, Bohl W E, Christiansen E L, et al.Ballistic performance of porous-ceramic, thermal protection systems[J]. Int. J. Impact Eng., 2013, 56: 40
[5] Christiansen E L, Crews J I, Williamsen J E, et al.Enhanced meteoroid and orbital debris shielding[J]. Int. J. Impact Eng., 1995, 17: 217
[6] Piekutowski A J, Poormon K L, Christiansen E L, et al.Performance of Whipple shields at impact velocities above 9km/s[J]. Int. J. Impact Eng., 2011, 38: 495
[7] Christiansen E L, Kerr J H.Ballistic limit equations for spacecraft shielding[J]. Int. J. Impact Eng., 2001, 26: 93
[8] Ha Y, Guan G S, Chi R Q, et al.Investigation of residual velocity of aluminum projectiles at hypervelocity impact on woven of basalt fiber [J]. Chin. J. High Press. Phys., 2012, 26: 273(哈跃, 管公顺, 迟润强等. 铝合金弹丸超高速撞击玄武岩纤维布剩余速度分析 [J]. 高压物理学报, 2012, 26: 273)
[9] Cour-Palais B G. Hypervelocity impact in metals, glass and composites[J]. Int. J. Impact Eng., 1987, 5: 221
[10] Ding L, Li C, Pang B J, et al.Ballistic limit equations in ballistic and shatter regions[J]. Int. J. Impact Eng., 2008, 35: 1490
[11] Ding L.Study of ballistic limit of dual-wall shielding structures against space debris [D]. Harbin: Harbin Institute of Technology, 2008.(丁莉. 空间碎片双层板防护结构撞击极限研究 [D]. 哈尔滨, 哈尔滨工业大学, 2008)
[12] Guan G S, Pang B J, Zhang W, et al.Crater distribution on the rear wall of AL-Whipple shield by hypervelocity impacts of AL-spheres[J]. Int. J. Impact Eng., 2008, 35: 1541
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!