Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (10): 743-750    DOI: 10.11901/1005.3093.2018.139
ARTICLES Current Issue | Archive | Adv Search |
Kinetics of Precipitation and Coarsening of Si-containing Phases in a Supersaturated Al-20% Si Alloy
Zhongpeng HU1, Jun JIANG1, Fujin LIAO2, Liandeng WANG2, Dingyi ZHU1()
1 School of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
2 School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
Cite this article: 

Zhongpeng HU, Jun JIANG, Fujin LIAO, Liandeng WANG, Dingyi ZHU. Kinetics of Precipitation and Coarsening of Si-containing Phases in a Supersaturated Al-20% Si Alloy. Chinese Journal of Materials Research, 2018, 32(10): 743-750.

Download:  HTML  PDF(5235KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The kinetics of precipitation and coarsening of Si-containing phases and the microstructure evolution of the die-casting plate of supersaturated Al-20%Si alloy during thermal treatment at 450 to 550℃ were investigated by means of differential scanning calorimeter (DSC), scanning electron microscope (SEM), and X-ray diffractometer (XRD). Results show that due to the pressure die casting induced rapid solidification and modification, the Al-20%Si alloy presented a non-equilibrium solidified and distorted microstructure with fine Si-phases (the average size of Si phase grains was less than 1 μm). In the annealing process the lattice distortion of the α-Al matrix was alleviated to some extent and the diffusion mechanism related with the coarsening of Si-phases seemed to be the bulk diffusion control (the coarsening index is approximately 3) with the activation energy of 69.59 kJ/mol. The annealing temperature exerted a significant effect on the coarsening rate constant but not on the coarsening index. In the initial stage of annealing, the tensile strength of the alloy decreased while the elongation increased with the increasing holding time. As the holding time longer than 90 minutes, the tensile strength and elongation both stabilized.

Key words:  metallic materials      kinetics      annealing      Al-20%Si alloy      supersaturated     
Received:  31 January 2018     
ZTFLH:  TG146  
Fund: Supported by Major International Joint Research Program of China (No. 2015DFA71350)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.139     OR     https://www.cjmr.org/EN/Y2018/V32/I10/743

Fig.1  Microstructures of die-casting plate made of Al-20%Si
Fig.2  DSC heating curve of Al-20%Si alloy
Fig.3  Microstructures of Al-20%Si alloy after being separately held for 30 min at different annealing temperatures (a) 25℃; (b) 450℃; (c) 500℃; (d) 550℃
Fig.4  Microstructures of Al-20%Si alloy after the alloy was held for different times at 500℃ (a) 20 min; (b) 60 min; (c) 90 min; (d) 120 min
Fig.5  XRD spectra of the α-Al phase in an elevation-angle zone after being held for 30 min at different annealing temperatures (a) 25℃; (b) 450℃; (c) 500℃; (d) 550℃
Annealing
temperature/℃
25 450 500 550
Lattice
parameter/nm
0.40472 0.40519 0.40524 0.40527
Table 1  Lattice parameter of α-Al matrix under different annealing temperature
Fig.6  The logarithmic relationship between the average size r?of Si phases and holding time at different annealing temperatures
Fig.7  Relationship between average size r?3of Si phase and holding time at different annealing temperatures
Fig.8  Relationship between coarsening rate constant and the annealing temperature
Fig.9  Relationship between tensile strength, and elongation, and the holding time
[1] Rahaman M L, Zhang L C. An investigation into the friction and wear mechanisms of aluminium high silicon alloy under contact sliding [J]. Wear, 2017, 376-377: 940
[2] Dedyaeva V, Akopyan T K, Padalko A G.High-pressure phase transitions and structure of Al-20 at% Si hypereutectic alloy[J]. Inorg. Mater., 2016, 52: 1077
[3] Cui C, Schulz A, Schimanski K, et al.Spray forming of hypereutectic Al-Si alloys[J]. J. Mater. Proc. Technol., 2009, 209: 5220
[4] Kang N, Coddet P, Chen C Y, et al.Microstructure and wear behavior of in-situ hypereutectic Al-high Si alloys produced by selective laser melting[J]. Mater. Design, 2016, 99: 120
[5] Liu G, Li G D, Cai A H, et al.The influence of Strontium addition on wear properties of Al-20wt% Si alloys under dry reciprocating sliding condition[J]. Mater. Des., 2011, 32: 121
[6] Heard D W, Donaldson I W, Bishop D P.Metallurgical assessment of a hypereutectic aluminum-silicon P/M alloy[J]. J. Mater. Proc. Technol., 2009, 209: 5902
[7] Sha M, Wu S S, Zhong G, et al.Variation of microstructure of RE-containing AlSi20Cu2Ni1RE0.6 alloy with different cobalt contents[J]. J. Alloys Compd., 2011, 509: 252
[8] Zhen Z S, Zhao A M, Mao W M, et al.Microstructures and formation mechanism of spray deposited hypereutectic Al-Si alloys[J]. Chin. J. Nonferr. Metals, 2000, 10: 815(甄子胜, 赵爱民, 毛卫民等. 喷射沉积高硅铝合金显微组织及形成机理[J]. 中国有色金属学报, 2000, 10: 815)
[9] Wu S S, Zhong G, AN P, et al.Microstructural characteristics of Al-20Si-2Cu-0.4Mg-1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment[J]. Trans. Nonferr. Metals Soc. China, 2012, 22: 2863
[10] Zhang H H, Duan H L, Shao G J, et al.Microstructure and mechanical properties of hypereutectic Al-Si alloy modified with Cu-P[J]. Rare Metals, 2008, 27: 59
[11] Xu C X, Zhao G Z, Zhang J S.Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy[J]. China Foundry, 2013, 10: 325
[12] Dedyaeva V, Akopyan T K, Padalko A G, et al.High-pressure phase transitions and structure of Al-20 at% Si hypereutectic alloy[J]. Inorg. Mater., 2016, 52: 1077
[13] Zhang S J, Bian X F, Guo J, et al.Effects of P modification on primary Si in hypereutectic Al-Si die casting alloy with different cooling rates[J]. Spec. Cast. Nonferr. Alloys, 2006, 26: 495(张士佼, 边秀房, 郭晶等. P变质对不同冷速下过共晶压铸铝合金初晶Si的影响[J]. 特种铸造及有色合金, 2006, 26: 495)
[14] Yu X F, Zhang G Z, Wang X Y, et al.Non-equilibrium microstructure of hyper-eutectic Al-Si alloy solidified under superhigh pressure[J]. J. Mater. Sci., 1999, 34: 4149
[15] Cai Z Y, Wang R C, Zhang C, et al.Microstructure and thermal stability of rapidly solidified hypereutectic Al-Si alloys[J]. Chin. J. Nonferr. Metals, 2015, 25: 618(蔡志勇, 王日初, 张纯等. 快速凝固过共晶Al-Si合金的显微组织及其热稳定性[J]. 中国有色金属学报, 2015, 25: 618)
[16] Baik K H, Seok H K, Kim H S, et al.Non-equilibrium microstructure and thermal stability of plasma-sprayed Al-Si coatings[J]. J. Mater. Res., 2005, 20: 2038
[17] Wang H, Yu F X, Sun Z G.Coarsening characteristic of Si particles in powders of rapidly solidified Al-Si alloy[J]. Foundry, 2007, 56: 65(王话, 于福晓, 孙振国. 快速凝固铝硅合金粉末加热过程中硅颗粒的粗化行为[J]. 铸造, 2007, 56: 65)
[18] Bendijk A, Delhez R, Katgerman L, et al.Characterization of Al-Si-alloys rapidly quenched from the melt[J]. J. Mater. Sci., 1980, 15: 2803
[19] Lifshitz I M, Slyozov V V.The kinetics of precipitation from supersaturated solid solutions[J]. J. Phys. Chem. Solids, 1961, 19: 35
[20] Wagner C.Theory of precipitate change by redissolution[J]. Z. Elektrochem., 1961, 65: 581
[21] Matyja H, Russell K C, Giessen B C, et al.Precipitation of silicon from splat-cooled Al-Si alloys[J]. Metallurg. Mater. Trans., 1975, 6A: 2249
[22] Varga B, Fazakas E, Hargitai H, et al.Dilatometer study of rapidly solidified aluminium-silicon based alloys[J]. J. Phys. Conf. Ser., 2009, 144: 012105
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!