Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (8): 569-575    DOI: 10.11901/1005.3093.2016.563
Orginal Article Current Issue | Archive | Adv Search |
Large Scale Halogen-free Synthesis of Metal-organic Framework Material Fe-MIL-100
Xiangping YANG1, Xiaoxue GUO1, Chenghua ZHANG2,3(), Yong YANG2,3, Yongwang LI2,3
1 College of Chemical Engineering, China University of Petroleum (HD), Qingdao 266000, China
2 National Engineering Laboratory of Coal Indirect Liquefaction, Synfuels China Co. Ltd., Beijing 101407, China
3 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Cite this article: 

Xiangping YANG, Xiaoxue GUO, Chenghua ZHANG, Yong YANG, Yongwang LI. Large Scale Halogen-free Synthesis of Metal-organic Framework Material Fe-MIL-100. Chinese Journal of Materials Research, 2017, 31(8): 569-575.

Download:  HTML  PDF(2277KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hierarchically porous iron (Ⅲ) trimesate Fe-MIL-100 were synthesized by hydro-thermal route of HF free in a large scale, with ironic nitrate and trimesic acid as raw materials. The structure and morphology of Fe-MIL-100 were characterized by X-ray diffraction (XRD), N2 physical adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TG). The effect of temperature, HNO3 addition, time and post-treatment on the structure of Fe-MIL-100 were investigated. The results show that the prepared Fe-MIL-100 has high crystallinity with BET surface area up to 1744 m2/g. The prepared materials have good thermal stability, which can withstand temperature up to 520 °C before decomposition in nitrogen.

Key words:  composite      large scale synthesis      Fe-MIL-100      hydrothermal synthesis     
Received:  26 September 2016     
ZTFLH:  TQ050.4  
Fund: Supported by National Natural Science Foundation of China (No.91545109) and International Cooperation in Science and Technology of Shanxi Province (No.2014081004)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.563     OR     https://www.cjmr.org/EN/Y2017/V31/I8/569

Fig.1  XRD patterns of Fe-MIL-100 with different temperature
Fig.2  XRD patterns of samples with different amount of HNO3
Fig.3  N2 adsorption/desorption isotherm of samples with different amount of HNO3 at -196℃
Fig.4  Optical photograph of sample (a), SEM images (b~d) of prepared samples with different amount of HNO3 (HNO3/Fe = 1, 2, 4 respectively)
HNO3/Fe 0 1 2 3 4
sBET/m2g-1
vtotal/cm3g-1
819
0.43
1351
0.69
1558
0.77
1380
0.69
1301
0.67
Table 1  Textural properties of Fe-MIL-100 with different amount of HNO3
Fig.5  XRD patterns of samples with different reaction times
Fig.6  N2 adsorption/desorption isotherm of samples with different reaction times at -196℃
Time/h 6 12 24 36 48
sBET/m2g-1
vtotal/cm3g-1
984
0.50
1588
0.77
1744
0.95
1599
0.78
1647
0.85
Table 2  Textural properties of Fe-MIL-100 with different time of crystallization
Fig.7  FTIR spectra of samples with different washing time
Fig.8  N2 adsorption/desorption isotherm of samples under different washing time at -196℃
Washing time/h 0 1 2 3
sBET/m2g-1
vtotal/cm3g-1
246
0.32
759
0.41
984
0.50
1301
0.68
Table 3  Textural properties of Fe-MIL-100 with different washing time
Fig.9  XRD patterns of samples with different value of Fe/H3BTC
Fig.10  N2 adsorption/desorption isotherm of samples with different value of Fe/H3BTC at -196℃
H3BTC/Fe(NO3)39H2O 0.5 0.66 1 1.5 2
sBET/m2g-1
vtotal/cm3g-1
1743
1.02
1744
0.95
1751
1.02
1410
0.82
1286
0.70
Table 4  Textural properties s of Fe-MIL-100 with different value of Fe/H3BTC
Fig.11  TG and heat flow of Fe-MIL-100
[1] Rodenas T, Van Dalen M, García-Pérez E, et al.Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI[J]. Adv. Funct. Mater., 2014, 24: 249
[2] Gascon J, Corma A, Kapteijn F, et al.Metal organic framework catalysis: Quo vadis?[J]. ACS Catal., 2014, 4: 361
[3] Farrusseng D, Aguado S, Pinel C.Metal-organic frameworks: opportunities for catalysis[J]. Angewandt. Chem. Int. Ed., 2009, 48: 7502
[4] Wang C, Xie Z G, deKrafft K E, et al. Doping Metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis[J]. J. Am. Chem. Soc., 2011, 133: 13445
[5] Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423: 705
[6] Zhao D, Timmons D J, Yuan D Q, et al.Tuning the topology and functionality of metal-organic frameworks by ligand design[J]. Account. Chem. Res., 2011, 44: 123
[7] Horcajada P, Surblé S, Serre C, et al.Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores[J]. Chem. Commun., 2007, (27): 2820
[8] Férey G, Serre C, Draznieks C M, et al.A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[J]. Angewandt. Chem. Int. Ed., 2004, 43: 6456
[9] Volkringer C, Popov D, Loiseau T, et al.Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100[J]. Chem. Mater., 2009, 21: 5695
[10] Mowat J P S, Miller S R, Slawin A M Z, et al. Synthesis, characterisation and adsorption properties of microporous scandium carbox ylates with rigid and flexible frameworks[J]. Micropor. Mesopor. Mater., 2011, 142: 322
[11] Lieb A, Leclerc H, Devic T, et al.MIL-100(V)-a mesoporous vanadium metal organic framework with accessible metal sites[J]. Micropor. Mesopor. Mater., 2012, 157: 18
[12] Wang D K, Wang M T, Li Z H.Fe-based metal-organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol[J]. ACS Catal., 2015, 5: 6852
[13] Zhu B J, Yu X Y, Jia Y, et al.Iron and 1, 3, 5-benzenetricarboxylic metal-organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions[J]. J. Phys. Chem., 2012, 116C: 8601
[14] Horcajada P, Serre C, Vallet-Regí M, et al.Metal-organic frameworks as efficient materials for drug delivery[J]. Angewandt. Chem. Int. Ed., 2006, 45: 5974
[15] Plaza M G, Ribeiro A M, Ferreira A, et al.Rodrigues, Separation of C3/C4 hydrocarbon mixtures by adsorption using a mesoporous iron MOF: MIL-100(Fe)[J]. Micropor. Mesopor. Mater., 2012, 153: 178
[16] Kurfi?tova L, Seo Y K, Hwang Y K, et al.High activity of iron containing metal-organic-framework in acylation of p-xylene with benzoyl chloride[J]. Catal. Today, 2012, 179: 85
[17] Dhakshinamoorthy A, Alvaro M, Hwang Y K, et al.Intracrystalline diffusion in metal organic framework during heterogeneous catalysis: influence of particle size on the activity of MIL-l00 (Fe) for oxidation reactions[J]. Dalton Trans., 2011, 40: 10719
[18] Ahmed I, Jeon J, Khan N A, et al.Synthesis of a metal-organic framework, iron-benezenetricarboxylate, from dry gels in the absence of acid and salt[J]. Cryst. Growth Des., 2012, 12: 5878
[19] Vimont A, Leclerc H, Maugé F, et al.Creation of controlled br?nsted acidity on a zeotypic mesoporous chromium(III) carboxylate by grafting water and alcohol molecules[J]. J. Phys. Chem., 2007, 111C: 383
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!