Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (1): 32-40    DOI: 10.11901/1005.3093.2016.037
Orginal Article Current Issue | Archive | Adv Search |
High Temperature Performance of a Mo-W Type Hot Work Die Steel of High Thermal Conductivity
Shuang LI1,2,3,Xiaochun WU1,2,3(),Xinxin LI1,2,3,Xijuan HE1,2,3
1 State Key Laboratory of Advanced Special Steel,Shanghai University,Shanghai 200072,China
2 Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University,Shanghai 200072,China
3 School of Materials Science and Engineering,Shanghai University,Shanghai 200072,China
Cite this article: 

Shuang LI,Xiaochun WU,Xinxin LI,Xijuan HE. High Temperature Performance of a Mo-W Type Hot Work Die Steel of High Thermal Conductivity. Chinese Journal of Materials Research, 2017, 31(1): 32-40.

Download:  HTML  PDF(7136KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The temper resistance,thermal stability,high temperature thermal conductivity and thermal fatigue were investigated for a new Mo-W type hot work die steel SDCM-S. The results show that in comparison with the convensional H13 steel,the SDCM-S exhibits better temper resistance and thermal stability with a hardnessabove 38HRC after holding at 620℃ for 20 h,which higher than H13 by 8HRC,wihle its second hardening temperature appeared at 580℃ which higher than H13 by approximately 60℃. The high temper resistance and thermal resistance of SDCM-S may be ascribed to the well stability of the precipitates of Mo2C carbide during tempering. The thermal conductivity of SDCM-S is 1.86 times and 1.26 times higher than those of H13 at 100℃ and 700℃,respectively,which may be due to the low content of Si,Mn and Cr,as well as the high content of Mo of SDCM-S. The SDCM-S has better thermal fatigue resistance than H13 steel,i.e. the former one has a damage parameter of thermal fatigue of ca.76.1% of that of the later. In conclusion,SDCM-S has better performance in high temperature temper resistance,thermal stability,and thermal conductivity,which reasonably result in better thermal fatigue resistance of the steel SDCM-S.

Key words:  metallic materials      hot work die steel      second hardening      thermal conductivity      temper resistance      thermal stability      thermal fatigue     
Received:  06 January 2016     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.037     OR     https://www.cjmr.org/EN/Y2017/V31/I1/32

C Mn Si Cr W Mo V
SDCM-S 0.35~0.40 0.10 0.04 0.12 1.5~2.0 4.5~5.0 0.02
H13 0.38 1.5 1.1 5.3 - 1.4 0.9
Table 1  Chemical composition of SDCM-S and H13 steel(%, mass fraction)
Fig.1  Schematic diagram of experimental apparatus and the size and geometry of a thermal fatigue specimen (mm)
Fig.2  Hardness dependent on temperature curve of two kinds of die steels
Fig.3  SEM microstructure of quenched (a) and tempered (b) SDCM-S steel
Fig.4  TEM micrographs of bright field image (a)and dark field image and diffraction patterns (b) of Mo2C carbides
Fig.5  TEM micrographs of bright field imageand diffraction patternsof M6C carbides
Fig.6  Hardness dependent on time curve of the two diesteels after 20 h of tempering at 620℃
Fig.7  SEM micrographs of the tempered microstructure of SDCM-S steel at 620℃ for 10h (a), 20 h (b) and H13 steel for10 h(c), 20h (d)
Fig.8  TEM micrograph of SDCM-S steel after tempered at 620℃ for 20 h
Fig.9  Temperature-dependent thermal properties of SDCM-Sand H13 die steels (a) special heat capacity, (b) thermal diffusivity coefficient and (c) thermal conductivity
Fig.10  Crack micrograph of SDCM-S steel after 1000 (a), 2000 (b), 3000 times (c) and H13 stee l1000 (d), 2000 (e), 3000 times (f)
Fig.11  Calculation results of thermal fatigue damage factor
Fig.12  Micro-hardness distribution away from the surface of two steels after 3000 cycles
[1] Cui K.Present condition and developing direction of die steels in china[J]. Materials for Mechanical Engineering, 2001, 25(1): 3
[1] (崔崑. 中国模具钢现状及发展[J]. 机械工程材料, 2001, 25(1): 3)
[2] Wu X C, ZUO P P, Development status and trend of hot working die steels at home and abroad[J]. Die & mould Industry, 2013, 39(10): 8
[2] (吴晓春, 左鹏鹏,国内外热作模具钢发展现状与趋势[J]. 模具工业, 2013, 39(10): 8)
[3] Fuchs K.Hot-work tool steels with improved properties for die-casting applications [A]. In 6th International Tooling Conference[C]. Karlstad University, 2002
[4] Kaschnitz E, Hofer P, Funk W.Thermophysical Properties of a Hot-Work Tool-Steel with High Thermal Conductivity[J]. Int. J. Thermophys. 2013, 34(1): 843
[5] Terada Y, Ohkubo K, Mohri T, Suzuki T.Effects of alloying additions on thermal conductivity of ferritic iron[J]. ISIJ international, 2002, 42(3): 322
[6] Xu W L, Li S, Yin X W.Studies on martensitic aging strengthening high thermal conductivity hot stamping die steel SKD1[J]. Chinese Journal of Materials Reaserch, 2013, 27(5): 532
[6] (徐伟力, 李爽, 尹学炜. 马氏体时效强化高热导率热冲压模具钢 SDK1 钢的性能[J]. 材料研究学报, 2013, 27(5): 532)
[7] Su T J, Wang F C, Li S K.Regression relationship established for thermal conductivity of steel as function of chemical composition at various temperatures. Ordnance Marerial Scienceand Engineering, 2004, 27(5): 14
[7] (苏铁健, 王福耻, 李树奎. 钢的热导率与化学成分和温度的关系[J]. 兵器材料科学与工程, 2004, 27(5): 14)
[8] Peet M J, Hasan H S, Bhadeshia H K D H, Prediction of thermal conductivity of steel[J]. Int J Heat Mass Transf, 2011, 54(1): 2607
[9] Zhu C Y, Shi N N, Zuo P P.Effect of Mn and W on thermal stability of 4Cr2Mo2W2V die steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(2): 66
[9] (朱春燕, 石楠楠, 左鹏鹏. Mn 和 W 元素对 4Cr2Mo2W2V 模具钢热稳定性的影响[J].材料热处理学报, 2014, 35(2): 66)
[10] Min N, Shi N N, Shen Y L.Internal friction investigation on thermal-stability of martensitic hot work steel[J]., Transactions of Materials and Heat Treatment, 2012, 33(2): 96
[10] (闵娜, 石楠楠, 沈赟靓. 马氏体热作模具钢热稳定性的内耗研究[J].材料热处理学报, 2012, 33(2): 96)
[11] Klob?ar D, Kosec L, Kosec B.Thermo fatigue cracking of die casting dies[J]. Eng. Fai. Anal. 2012, 20(1): 43
[12] Mellouli D, Haddar N, K?ster A.Thermal fatigue failure of brass die-casting dies[J]. Eng. Fai. Anal, 2012, 20(1): 137
[13] Klob?ar D, Tu?ek J, Taljat B.Thermal fatigue of materials for die-casting tooling[J]. Mat, Sci, Eng, A, 2008, 472(1): 198
[14] Klob?ar D, Tu?ek J.Thermal stresses in aluminium alloy die casting dies[J]. Com, Mat, Sci, 2008, 43(1): 1147
[15] Berns H, Strength and toughness of hot working tool steels[J]. Tool Materials for Molds and Dies, Application and Performance, 1987, 45(1): 326
[16] SHEN Z, Li C, Su C H.Thermal diffusivity, thermal conductivity, and specific heat capacity measurements of molten tellurium[J]. J, Cry, Gro, 2003, 250(1): 272
[17] Min Y A.Study on the surface treatment process of H13 type hot work steel and its subsequent thernal fatigue and erosion behaviors [D]. Shanghai: Shanghai University, 2005
[17] (闵永安. 热作模具钢H13型表面处理及其热疲劳热熔损性能研究 [D]. 上海: 上海大学, 2005)
[18] Wu X C, Xu L P.Computer-aided eveluation for hot fatigue crack of modle steel[J]. Shanghai Steel, 2001, 23(6): 3
[18] (吴晓春,许珞萍. 模具钢热疲劳裂纹的计算机辅助评定[J]. 上海金属, 2001, 23(6): 3)
[19] Xie H J, Wu X C.Computer evaluation for the degree of thermal fatigue damage of hot working die steel[J]. Shanghai Steel, 2008, 30(3): 1
[19] (谢豪杰, 吴晓春. 热作模具钢热疲劳损伤程度的计算机评定[J]. 上海金属, 2008, 30(3): 1)
[20] Xu X, Wu X C.Study on damage parameter for thermal fatigue of hot work model steel[J]. Shanghai Steel, 2003, 25(2): 1)
[20] (徐晓, 吴晓春. 热作模具钢热疲劳损伤因子的研究[J]. 上海金属, 2003, 25(2): 1)
[21] Liu Q D, Liu W Q, Wang Z M.3D atom probe characterazation of alloy carbides in temperature martenite[J]. Acta. Metall. Sin, 2009, 45(1): 1281
[21] (刘庆冬, 刘文庆, 王泽民. 回火马氏体中合金碳化物的3D原子探针表征 I, 形核[J]. 金属学报, 2009, 45(1): 1281)
[22] Hu Z F, Wu X F, Wang C X.Coarsening kinetics of multi-component M2C precipitation in secondary hardening alloy steels[J]. Acta. Metall. Sin, 2003, 39(6): 585
[22] (胡正飞, 吴杏芳, 王春旭. 二次硬化合金钢中多组元强化相 M2C 碳化物的粗化动力学研究[J]. 金属学报, 2003, 39(6): 585)
[23] Chen Y, Chen Z Z, Dong Han.Adavance on research of tempering secondary hardening of alloy tool and die steel Fe-M-C quenched martensite[J]. Special Steel, 2004, 25(2): 37
[23] (陈鹰, 陈再枝, 董瀚. 合金工模具钢 Fe-MC 淬火马氏体回火的二次硬化研究进展[J]. 特殊钢, 2004, 25(2): 37)
[24] Wan R, Sun F, Zhang L.Effects of Mo on high-temperature strength of fire-resistant steel[J]. Mat. Des, 2012, 35(1): 335
[25] Li P H, Liu J X, Chen X.Study on microstructure of high performance fire resistance and weathering construction steel[J]. Iron and Steel, 2005, 40(6): 74
[25] (李平和, 刘继雄, 陈晓. 高性能耐火耐候建筑结构用钢的显微组织研究[J]. 钢铁, 2005, 40(6): 74)
[26] Miyata K, Sawaragi Y.Effect of Mo and W on the phase stability of precipitates in low Cr heat resistant steels[J]. ISIJ international, 2001, 41(3): 281
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!