Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (6): 401-408    DOI: 10.11901/1005.3093.2015.589
ARTICLES Current Issue | Archive | Adv Search |
Effect of V and Si on Microstructure and Mechanical Properties of Medium-carbon Pearlitic Steels for Wheel
ZUO Yue1,2, ZHOU Shitong2,3, LI Zhaodong2,**(), PAN Tao2, XIANG Jinzhong1, YONG Qilong2
1. School of Physical Science and Technology, Yunnan University, Kunming 650091, China
2. Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
3. Department of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

ZUO Yue, ZHOU Shitong, LI Zhaodong, PAN Tao, XIANG Jinzhong, YONG Qilong. Effect of V and Si on Microstructure and Mechanical Properties of Medium-carbon Pearlitic Steels for Wheel. Chinese Journal of Materials Research, 2016, 30(6): 401-408.

Download:  HTML  PDF(1724KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of V and Si on the microstructure and mechanical properties of medium-carbon pearlitic steels for wheel was studied by means of OM、SEM and TEM, as well as tensile and impact tests. The results showed that the austenite grain size, the pearlite colony size and interlamellar spacing were significantly refined by increasing V content, which also led to an increase in the volume fraction of proeutectoid ferrite of the steels. With the increasing of V content, the yield strength at room temperature and the impact toughness at -20℃were enhanced due to precipitation strengthening and grain refinement effects of VC. However, the tensile strength at room temperature was decreased due to the increasing of the soft phase, i.e., proeutectoid ferrite. The increase of Si content resulted in the great decrease of proeutectoid ferrite and the significant refinement of pearlite interlamellar spacing but the slight refinement of austenite grain size. Si addition also promoted the VC precipitation but had only a little influence. The yield- and tensile-strength were enhanced mainly by the effect of solid solution strengthening and the refinement of pearlite interlamellar spacing due to Si addition. The balance of strength and toughness in medium-carbon pearlite steels could be effectively optimized by microalloying with the combination of medium 0.07%-0.08%V(mass fraction) and relatively high 0.8%-0.9%Si (mass fraction).

Key words:  metallic material      wheel steel      microalloying      grain refinement      phase transformation      strength and toughness     
Received:  18 October 2015     
ZTFLH:  TG142  
Fund: *Supported by National Basic Research Program of China No.2015CB654803 and National High Technology Research and Development Program of China No.2015AA034302
About author:  **To whom correspondence should be addressed, Tel: (010) 62182763, E-mail: lizhaodong@cisri.com.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.589     OR     https://www.cjmr.org/EN/Y2016/V30/I6/401

No. C Si Mn P S Cr V Als N
1#(0.88Si-0.03V) 0.54 0.88 0.78 0.0079 0.0077 0.17 0.030 0.020 0.0014
2#(0.89Si-0.074V) 0.55 0.89 0.78 0.0068 0.0067 0.16 0.074 0.020 0.0018
3#(0.87Si-0.12V) 0.54 0.87 0.78 0.0072 0.0078 0.18 0.120 0.021 0.0016
4#(0.32Si-0.075V) 0.53 0.32 0.77 0.0068 0.0083 0.16 0.075 0.016 0.0010
Table 1  Composition of studied steels (%, mass fraction)
Fig.1  OM images showing austenite grain morphology of the steels (a) 1#; (b) 2#; (c) 3#; (d) 4#
No. Austenite grain size/μm Ferrite volume fraction / % Pearlite colony size/μm Pearlite interlamellar spacing /μm
1# 23.1±1.2 4.3 9.8±1.3 0.172±0.02
2# 20.1±0.5 12.2 7.4±0.9 0.147±0.02
3# 14.9±0.7 21.4 5.8±0.4 0.140±0.02
4# 21.4±0.6 19.5 7.7±0.8 0.159±0.02
Table 2  Austenite grain size, proeutectoid ferrite volume fraction, pearlite colony size and interlamellar spacing of studied steels
Fig.2  OM images of proeutectoid ferrite and pearlite of the steels (a) 1#; (b) 2#; (c) 3#; (d) 4#
Fig.3  SEM images of proeutectoid ferrite and pearlite of the steels (a) 1#; (b) 2#) (c) 3#; (d) 4#
No. Yield strength / MPa Tensile strength / MPa Total elongation / % KV2 /J (-20℃)
1# 511 914 19.0 10
2# 531 907 21.0 14
3# 561 892 21.0 16
4# 485 813 22.0 14
Table 3  Tensile and impact properties of experimental steels, respectively at room temperature and -20℃
Fig.4  The effect of nominal V content on dissolved C/V in austenite in medium carbon steels
Fig.5  TEM images of VC precipitates in 3# steel (a) VC with proeutectoid ferrite; (b) VC with pearlite; (c) EDS of VC
Fig.6  Phase transformation temperatures of 2# and 4# steels under different cooling rates (austenitizing at 860℃)
Fig.7  The effect of Si content on dissolved C/V in austenite in medium carbon steels
Fig.8  The microhardness of proeutectoid ferrite and pearlite of the steels
Fig.9  Impact fracture morphology of the studied steels (a) 1#; (b) 2#; (c) 3#; (d) 4#
1 YONG Qilong, Secondary Phase in Steels (Beijing, Metallurgical Industry Press, 2006) p.8
(雍岐龙, 钢铁材料中的第二相(北京, 冶金工业出版社, 2006)p.8)
2 DONG Han, Advanced Steel Materials (Beijing, Science Press, 2008)p..103
(董瀚, 先进钢铁材料(北京, 科学出版社, 2008)p.103)
3 S. Parsons, D. Edmonds, Microstructure and mechanical properties of medium-carbon ferrite-pearlite steel microalloyed with vanadium, Materials Science and Technology, 3(11), 894(1987)
4 F. Ishikawa, T. Takahashi, T. Ochi, Intragranular ferrite nucleation in medium-carbon vanadium steels, Metall. Mater. Trans. A, 25(5), 929(1994)
doi: 10.1007/BF02652268
5 B. Garbarz, F. Pickering, Effect of pearlite morphology on impact toughness of eutectoid steel containing vanadium, Materials Science and Technology, 4(4), 328(1988)
6 G. Dunlop, C. Carlsson, G. Frimodig, Precipitation of VC in ferrite and pearlite during direct transformation of a medium carbon microalloyed steel, Metallurgical Transactions A, 9(2), 261(1978)
doi: 10.1007/BF02646709
7 LI Yi, YANG Zhongmin, The effects of V on phase transformation of high carbon steel during continuous cooling, Acta Metall. Sin., 46(12), 1501(2010)
(李翼, 杨忠民, V对高碳钢连续冷却时组织转变的影响, 金属学报, 46(12), 1501(2010))
doi: 10.3724/SP.J.1037.2010.00284
8 A. Ekberg, P. Sotkovszki, Anisotropy and rolling contact fatigue of railway wheels, International Journal of Fatigue, 23(1), 29(2001)
doi: 10.1016/S0142-1123(00)00070-0
9 L. Holappa, V. Ollilainen, W. Kasprzak, The effect of silicon and vanadium alloying on the microstructure of air cooled forged HSLA steels, Journal of Materials Processing Technology, 109(2), 78(2001)
doi: 10.1016/S0924-0136(00)00778-0
10 T. Furuhara, K. Kikumoto, H. Saito, T. Sekine, T. Ogawa, S. Morito, T. Maki, Phase transformation from fine-grained austenite, ISIJ International, 48(8), 1038(2008)
doi: 10.2355/isijinternational.48.1038
11 N. Ralik, G. Lorimer, N. Ridlel, An investigation of manganese partitioning during the austenite-pearlite transformation using analltical electron microscopl, ActaMetallurgica, 22(10), 1249(1974)
doi: 10.1016/0001-6160(74)90138-2
12 N. Ridley, A review of the data on the interlamellar spacing of pearlite, Metallurgical Transactions A, 15(6), 1019(1984)
doi: 10.1007/BF02644694
13 K. Han, Alloy additions on solubility of alloy carbides in steels, ScriptaMetallurgica et Materialia, 28(6), 699(1993)
doi: 10.1016/0956-716X(93)90037-S
14 K. Han, G. Smith, D. Edmonds, Pearlite phase transformation in Si and V steel, Metall Mater Trans A, 26(7), 1617(1995)
doi: 10.1007/BF02670750
15 T. Gladman, I. McIvor, F. Pickering, Some aspects of the structure-property relationships in high-C ferrite-pearlite steels, J. Iron Steel Inst., 210(12), (916)1972
16 H. Sakamoto, K. Toyama, K. Hirakawa, Fracture toughness of medium-high carbon steel for railroad wheel, Mat.Sci.Eng.a-Struct, 285(1), 288(2000)
doi: 10.1016/S0921-5093(00)00648-1
17 O. Modi, N. Deshmukh, D. Mondal, A. Jha, A. Yegneswaran, H. Khaira, Effect of interlamellar spacing on the mechanical properties of 0.65% C steel, Materials Characterization, 46(5), 347(2001)
18 J. M. Hyzak, I. M. Bernstein, The role of microstructure on the strength and toughness of fully pearlitic steels, Metallurgical Transactions A, 7(8), 1217(1976)
doi: 10.1007/BF02656606
19 T. Takahashi, M. Nagumo, Y. Asano, Microstructures dominating the ductility of eutectoid pearlitic steels. Journal of the Japan Institute of Metals, 42(7), 708(1978)
20 Y. J. Park, I. M. Bernstein, The process of crack initiation and effective grain size for cleavage fracture in pearlitic eutectoid steel, Metallurgical Transactions A, 10(11), 1653(1979)
doi: 10.1007/BF02811698
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. 材料研究学报, 2023, 37(7): 511-522.
No Suggested Reading articles found!