Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (6): 409-417    DOI: 10.11901/1005.3093.2015.696
ARTICLES Current Issue | Archive | Adv Search |
Strain Hardening Behavior and Stress Ratio of High Deformability Pipeline Steel with Ferrite/Bainite Multi-phase Microstructure
TANG Cunjiang1, SHANG Chengjia1,**(), GUAN Hailong1,2, WANG Xuemin1
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Jianlong Group, Zunhua 064200, China
Cite this article: 

TANG Cunjiang, SHANG Chengjia, GUAN Hailong, WANG Xuemin. Strain Hardening Behavior and Stress Ratio of High Deformability Pipeline Steel with Ferrite/Bainite Multi-phase Microstructure. Chinese Journal of Materials Research, 2016, 30(6): 409-417.

Download:  HTML  PDF(1122KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Five ferrite/bainite (F/B) multi-phase steels with different volume fractions of bainite were obtained by TMCP process. The strain hardening behavior of high deformability pipeline steel with F/B multi-phase was studied by the analysis of longitudinal mechanical properties and modified C-J analysis. The relationships between volume fraction of bainite and stress ratio as well as yield ratio were analyzed, and relevant mechanisms were illustrated by modified C-J analysis. The results show that the stage of elastic deformation of high deformability pipeline steel mainly corresponds to stage I in modified C-J analysis, and the stage of plastic deformation consists of stage II and stage III; and the stage near yield point (0.5% strain) can go across stage I and stage II. However, the strain hardening capability of each stage is obviously different from each other, and the strain hardening behavior is closely related to the volume fraction of bainite in F/B multi-phase steel. The optimal matching between strength and plasticity of pipeline steel can be achieved by controlling the microstructure suitably. The stress ratio of Rt1.5/Rt0.5 is appropriate to describe the strain hardening capability near the yield point, and the stress ratios of Rt2/Rt1 and Rt5/Rt1 are appropriate to represent the strain hardening capability of plastic deformation stage in X70 grade pipeline steel. The stress ratio of Rt2/Rt1 is suitable to characterize the strain hardening capability of plastic deformation stage in X80 grade pipeline steel.

Key words:  metallic materials      ferrite/bainite multi-phase steel      high deformability pipeline steel      strain hardening behavior      modified C-J analysis      volume fraction of bainite      stress ratio      yield ratio     
Received:  02 December 2015     
ZTFLH:  TG142.1  
Fund: *Supported by National Basic Research Program of China No.2010CB630801
About author:  **To whom correspondence should be addressed , Tel: (010)62332428, E-mail: cjshang@ustb.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.696     OR     https://www.cjmr.org/EN/Y2016/V30/I6/409

Fig.1  Schematic of TMCP process
C Si Mn Ti Nb Ni+Cr+Cu
0.04 0.22 1.75 0.015 0.095 0.5
Table 1  Chemical composition of experimental steels (mass fraction,%)
Fig.2  Microstructures of experimental steels obtained by TMCP process (a) No.1, (b) No.2, (c) No.3, (d) No.4, (e) No.5. Note: AF-acicular ferrite, PF-proeutectoid ferrite, B-bainite
Fig.3  Engineering stress-strain curves of experimental steels
Experimental
steel
Volume fraction of
Bainite/%
Engineering value
Rt0.5/MPa Rm/MPa UEL/% Agt/% TEL/%
No.1 0 513 668 11.8 12.2 -
No.2 27.9 520 774 10.8 11.5 31.7
No.3 47.0 560 848 9.0 9.6 28.9
No.4 65.9 638 914 6.1 6.7 25.7
No.5 100 914 1031 1.4 1.6 -
Table 2  Volume fraction of bainite and longitudinal mechanical properties of experimental steels
Fig.4  Effect of volume fraction of bainite on stress ratio and yield ratio of experimental steels
Fig.5  Effect of volume fraction of bainite on engineering stress of experimental steels
Fig.6  Modified C-J analysis curves of experimental steels
Experimental
Steel
Stage I Stage II Stage III Engineering strain/%
1-m 1/m 1-m 1/m 1-m 1/m Transition strain Elongation
at maximum force (Agt)
εt1
(stage I-II)
εt2
(stage II-III)
No.1 -14.8 0.06 -4.6 0.18 -13.4 0.07 0.6 3.3 12.2
No.2 -6.5 0.13 -6.9 0.13 -9.3 0.10 0.8 4.6 11.5
No.3 -4.9 0.17 -9.6 0.09 -11.3 0.08 0.8 3.1 9.6
No.4 -4.0 0.20 -12.5 0.07 0.7 6.7
No.5 -3.3 0.23 -24.3 0.04 0.4 1.6
Table 3  The strain hardening capability of each stages and transition strain (εt) of experimental steel in modified C-J analysis
Fig.7  Transition strain (εt1, εt2) of modified C-J analysis in engineering stress-strain curves of experimental steels
Fig.8  The relationship between yield stress (Rt0.5) and stress ratio of the experimental steels in the region of X70-X80 grade
The grade of
experimental steels
(interval of yield stress/MPa)
Slope of linear fitting
(absolute value)
Standard deviation of stress ratio
(sample estimation)
Rt1.5/Rt0.5 Rt2/Rt1 Rt5/Rt1 Rt1.5/Rt0.5 Rt2/Rt1 Rt5/Rt1
X70 (485-635) 0.0025 0.0002 0.0003 0.107 0.014 0.016
X80 (555-705) 0.0006 0.0003 0.0006 0.053 0.011 0.026
Table 4  The absolute value of the linear fitted slope of stress ratio and standard deviation of experimental steels in the region of X70-X80 grade
Fig.9  The relationship between the stress ratio of the experimental steels in the region of X70-X80 grade and the specified values of stress ratio in the standard
1 H. G. Hillenbrand, A. Liessem, K. Biermann, C. J. Heckmann, V. Schwinn, Development of high strength material and pipe production technology for grade X120 line pipe, in: Proceedings of IPC2004 International Pipeline Conference, edited by AMSE (Calgary, Alberta, Canada, 2004) p.1-7
doi: 10.1115/IPC2004-0224
2 GAO Huilin, The challenges for pipeline projects and development trend of pipeline steel, Weld Pipe and Tube, 33(10), 5(2010)
(高惠临, 管道工程面临的挑战与管线钢的发展趋势, 焊管, 33(10), 5(2010))
doi: 10.3969/j.issn.1001-3938.2010.10.001
3 LI Helin, LI Xiao, JI Lingkang, CHEN Hongda, Strain-based design for Pipeline and development of pipe steels with high deformation resistance, Weld Pipe and Tube, 30(5), 5(2007)
(李鹤林, 李霄, 吉玲康, 陈宏达, 油气管道基于应变的设计及抗大变形管线钢的开发与应用, 焊管, 30(5), 5(2007))
doi: 10.3969/j.issn.1001-3938.2007.05.001
4 GAO Huilin, ZHANG Xiaoyong, Research and development of large deformability pipeline steels, Weld Pipe and Tube, 37(4), 14(2014)
(高惠临, 张骁勇, 大变形管线钢的研究和开发, 焊管, 37(4), 14(2014))
doi: 10.3969/j.issn.1001-3938.2014.04.004
5 LI Helin, JI Lingkang, TIAN Wei, Significant technical progress in the West-East Gas Pipeline projects-Line One and Line Two, Natural Gas Industry, 30(4), 1(2010)
(李鹤林, 吉玲康, 田伟, 西气东输一, 二线管道工程的几项重大技术进步, 天然气工业, 30(4), 1(2010))
doi: 10.3787/j.issn.10000976.2010.04.001
6 L. K. Ji, H. Y. Chen, C. Y. Huo, H. L. Li, C. J. Zhuang, S. T. Gong, W. Z. Zhao, H. L. Gao, Key issues in the specification of high strain line pipe used in strain-based designed districts of the 2nd west to east pipeline, in: Proceeding of IPC2008 7th International Pipeline Conference, edited by AMSE (Calgary, Alberta, Canada, 2008) p.1-9
7 N. Ishikawa, M. Okatsu, S. Endo, J. Kondo, Design concept and production of high deformability linepipe, in: Proceeding of IPC2006 6th International Pipeline Conference, edited by AMSE (Calgary, Alberta, Canada, 2006) p.1-8
doi: 10.1115/IPC2006-10240
8 ZHANG Xiaoyong, GAO Huilin, XU Xueli, BI Zongyue, Deformation and fracture behavior of X80 pipeline steel with excellent deformability, Transactions of Materials and Heat Treatment, 35(2), 75(2014)
(张骁勇, 高惠临, 徐学利, 毕宗岳, X80大变形管线钢的变形与断裂行为, 材料热处理学报, 35(2), 75(2014))
9 C. J. Shang, D. X. Xia, X. L. Wang, X. C. Li, W. J. Nie, The Development of Third-generation Pipeline Steel in China, in: Proceeding of 6th International Pipeline Technology Conference, edited by AMSE (Ostend, Belgium, 2013) p.1-14
10 NIE Wenjin, SHANG Chengjia, GUAN Hailong, ZHANG Xiaobing, CHEN Shaohui, Control of microstructures of ferrite/bainite (F/B) dual-phase steels and analysis of their resistance to deformation behavior, Acta Metallurgica Sinica, 48(3), 298(2012)
(聂文金, 尚成嘉, 关海龙, 张晓兵, 陈少慧, 铁素体/贝氏体 (F/B) 双相钢组织调控及其抗变形行为分析, 金属学报, 48(3), 298(2012))
doi: 10.3724/SP.J.1037.2011.00634
11 JIAO Duotian, CAI Qingwu, WU Huibin, Effects of cooling process after rolling on microstructure and yield ratio of high-strain pipeline steel X80, Acta Metallurgica Sinica, 45(9), 1111(2009)
(焦多田, 蔡庆伍, 武会宾, 轧后冷却制度对 X80 级抗大变形管线钢组织和屈强比的影响, 金属学报, 45(9), 1111(2009))
12 X. Y. Zhang, H. L. Gao, X. Q. Zhang, Y. Yang, Effect of volume fraction of bainite on microstructure and mechanical properties of X80 pipeline steel with excellent deformability, Materials Science and Engineering A, 531, 84(2012)
13 L. K. Ji, H. L. Li, H. T. Wang, J. M. Zhang, W. Z. Zhao, H. Y. Chen, Y. Li, Q. Chi, Influence of dual-phase microstructures on the properties of high strength grade line pipes, Journal of Materials Engineering and Performance, 23(11), 3867(2014)
doi: 10.1007/s11665-014-1184-4
14 A. Kumar, S. B. Singh, K. K. Ray, Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels, Materials Science and Engineering A, 474(1-2), 270(2008)
doi: 10.1016/j.msea.2007.05.007
15 A. Bag, K. K. Ray, E. S. Dwarakadasa, Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels, Metallurgical and Materials Transactions A, 30(5), 1193(1999)
doi: 10.1007/s11661-999-0269-4
16 GAO Huilin, Analysis and commentary on yield ratio of pipeline steel, Weld Pipe and Tube, 33(6), 10(2010)
(高惠临, 管线钢屈强比分析与评述, 焊管, 33(6), 10(2010))
doi: 10.3969/j.issn.1001-3938.2010.06.002
17 Y. M. Kim, S. K. Kim, Y. J. Lim, N. J. Kim, Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels, ISIJ International, 42(12), 1571(2002)
doi: 10.2355/isijinternational.42.1571
18 LIU Jianbing, XIONG Xiangjiang, XIA Zhenghai, Wu Qingming, CHEN Qiming, LI Zhongping, Effects of thermo-mechanical control process on microstructure and mechanical properties of X80 grade high-strain line pipe steel, Heat Treatment of Metals, 35(12), 55(2010)
(刘建兵, 熊祥江, 夏政海, 吴清明, 陈奇明, 李中平, 控轧控冷工艺对 X80 级抗大变形管线钢组织与性能的影响, 金属热处理, 35(12), 55(2010))
19 D. Das, P. P. Chattopadhyay, Influence of martensite morphology on the work-hardening behavior of high strength ferrite-martensite dual-phase steel, Journal of Materials Science, 44(11), 2957(2009)
doi: 10.1007/s10853-009-3392-0
20 H. Paruz, D. V. Edmonds, The strain hardening behaviour of dual-phase steel, Materials Science and Engineering A, 117, 67(1989)
doi: 10.1016/0921-5093(89)90087-7
21 J. Lian, Z. Jiang, J. Liu, Theoretical model for the tensile work hardening behaviour of dual-phase steel, Materials Science and Engineering A, 147(1), 55(1991)
doi: 10.1016/0921-5093(91)90804-V
22 R. E.Reed-Hill, W. R. Cribb, S. N. Monteiro, Concerning the analysis of tensile stress-strain data using log dσ/dεp versus log σ diagrams, Metallurgical Transactions, 4(11), 2665(1973)
23 Y. Tomita, K. Okabayashi, Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite, Metallurgical Transactions A, 16(1), 73(1985)
24 F. H. Samuel, Tensile stress-strain analysis of dual-phase structures in an Mn-Cr-Si steel, Materials Science and Engineering, 92, L1(1987)
25 Y. Tomita, K. Okabayashi, Tensile stress-strain analysis of cold worked metals and steels and dual-phase steels, Metallurgical Transactions A, 16(5), 865(1985)
doi: 10.1007/BF02814837
26 D. A. Korzekwa, D. K. Matlock, G. Krauss, Dislocation substructure as a function of strain in a dual-phase steel, Metallurgical Transactions A, 15(6), 1221(1984)
doi: 10.1007/BF02644716
27 H. P. Shen, T. C. Lei, J. Z. Liu, Microscopic deformation behaviour of martensitic-ferritic dual-phase steels, Materials Science and Technology, 2(1), 28(1986)
doi: 10.1179/026708386790123576
28 S. R. Mediratta, V. Ramaswamy, V. Singh, P. Ramarao, Dependence of strain hardening exponent on the volume fraction and carbon content of martensite in dual phase steels during multistage work hardening, Journal of Materials Science Letters, 9(2), 205(1990)
29 P. Antoine, S. Vandeputte, J. B. Vogt, Effect of microstructure on strain-hardening behaviour of a Ti-IF steel grade, ISIJ International, 45(3), 399(2005)
doi: 10.2355/isijinternational.45.399
30 SHA Guiying, HAN Enhou, XU Yongbo, ZHANG Xiuli, LIU Lu, Dynamic stress-strain behavior for acicular ferrite steel, Chinese Journal of Materials Research, 19(6), 561(2005)
(沙桂英, 韩恩厚, 徐永波, 张修丽, 刘路, 针状铁素体钢的动态应力-应变行为, 材料研究学报, 19(6), 561(2005))
31 American Petroleum Institute, Specification for Line Pipe, API Specification 5L forty-fifth edition (2012)
32 HAO Ladi, YU Huadong, Standard deviation and standard error of arithmetic mean, Acta Editologica, 17(2), 116(2005)
(郝拉娣, 于化东, 标准差与标准误, 编辑学报, 17(2), 116(2005))
doi: 10.3969/j.issn.1001-4314.2005.02.017
33 FAN Xuehua, LI Xiangyang, DONG Lei, SUN Lu, LU Xuetong, SU Deguang, Progress in research and application of pipeline steels with high deformation resistance in China, Oil and Gas Storage and Transportation, 34(3), 237(2015)
(樊学华, 李向阳, 董磊, 孙璐, 陆学同, 苏德光, 国内抗大变形管线钢研究及应用进展, 油气储运, 34(3), 237(2015))
34 CHEN Xiaowei, FU Yanhong, WANG Xu, XIONG Xiangjiang, WANG Dongchao, Development of X70 SAWL pipe with large deformation resistance, Weld Pipe and Tube, 35(3), 71(2012)
(陈小伟, 付彦宏, 王旭, 熊祥江, 王东超, X70 抗大变形直缝埋弧焊管的开发, 焊管, 35(3), 71(2012))
doi: 10.3969/j.issn.1001-3938.2012.03.014
35 Pipeline Construction Administration Department of PetroChina Company Limited, Supplementary technical specification of high strain LSAW line pipe for the second west-east natural gas transmission pipeline project, Q/SY GJX0135(2008)(enterprise standard of CNPC Pipeline Construction Administration Department)
(中国石油天然气股份有限公司管道建设项目经理部, 西气东输二线管道工程基于应变设计地区使用的直缝埋弧焊管补充技术条件, Q/SY GJX0135 (2008) (中国石油管道建设项目经理部企业标准)
36 JI Lingkang, LI Helin, CHEN Hongyuan, ZHAO Wenzhen, Analysis of local buckling strain of line pipe, Chinese Journal of Applied Mechanics, 29(6), 758(2012)
(吉玲康, 李鹤林, 陈宏远, 赵文轸, 管线钢管局部屈曲应变分析与计算, 应用力学学报, 29(6), 758(2012))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!