Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (10): 721-730    DOI: 10.11901/1005.3093.2016.105
ARTICLES Current Issue | Archive | Adv Search |
Dynamic Aging Behavior and Mechanical Properties of an Al-Mg-Si Aluminium Alloy Induced by Equal Channel Angular Pressing
Manping LIU1,**(),Jiangtao WEI1,Yichao LI1,Jiawei JIANG1,Kui JIANG1,J. Roven Hans2
1. Jiangsu Province Key Laboratory of High-end Structural Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2. Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
Cite this article: 

Manping LIU,Jiangtao WEI,Yichao LI,Jiawei JIANG,Kui JIANG,J. Roven Hans. Dynamic Aging Behavior and Mechanical Properties of an Al-Mg-Si Aluminium Alloy Induced by Equal Channel Angular Pressing. Chinese Journal of Materials Research, 2016, 30(10): 721-730.

Download:  HTML 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this paper, dynamic aging behavior and mechanical properties of an Al-Mg-Si alloy were investigated by means of X-ray diffractometer (XRD), differential scanning calorimetry (DSC) analysis, transmission electron microscope (TEM) and tensile test. The dynamic aging was performed on the solution-treated alloy through equal channel angular pressing (ECAP) at different temperatures. The DSC analyses reveal that dynamic aging in the alloys occurred during ECAP. The XRD, DSC analyses and TEM observation reveal that a considerable amount of dislocations and β″ precipitates had already existed during dynamic aging. Combination of high ductility (uniform elongation large than 10%) and high strength was obtained for the ECAPed alloys. The highest ultimate tensile strength and yield strength of the ECAPed alloys are 450 MPa and 425 MPa, respectively. The very high strength and good ductility of the ECAPed alloy can be attributed to the synergistic interaction of the fine β'' precipitates and the high densities of dislocations after ECAP.

Key words:  metallic materials      equal-channel angular pressing      severe plastic deformation      Al-Mg-Si aluminum alloy      dynamic aging behavior      mechanical properties      strength-ductility     
Received:  26 February 2016     
Fund: *Supported by National Natural Science Foundation of China No.50971087, Key University Science Research Project of Jiangsu Province No.14KJA430002, and Jiangsu Province Key Laboratory of High-end Structural Materials No.hsm1301.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.105     OR     https://www.cjmr.org/EN/Y2016/V30/I10/721

Mg Si Cu Cr Mn Fe Zn Ti Al
0.8~1.2 0.4~0.8 0.15~0.40 0.15~0.35 0.15 0.7 0.25 0.15 Bal.
Table 1  Composition of the 6061 alloy (mass fraction, %)
Fig.1  Dimension of tensile specimens (unit: mm)
Fig.2  XRD spectra of the 6061 alloy in different conditions
State D/nm ε212/% ρ /1014m-2
SST+ECAP at RT 100 0.074 1.75
SST+ECAP at 110°C 113 0.138 1.48
SST+ECAP at 170°C 143 0.100 1.28
SST+ECAP at 191°C 173 0.115 0.81
Table 2  Microstructural parameters of the ECAP alloy determined by XRD analysis
Fig.3  DSC plots for the heat flow of precipitate reactions of 6061 Al alloy (a) SST; (b) ECAPed at RT; (c) ECAPed at 170℃; (d) ECAPed at 191℃
State Clusters GP zones β " β ' β
SST 65 160 245 330 415
SST+ECAPed at RT 70 205 - - 395
SST+ECAPed at 170 °C 90 190 270 360 400
SST+ECAPed at 191 °C 70 185 250 - 395
Table 3  Exothermic peak temperatures on DSC curves after solid-solution treatment and dynamic aging (℃)
Fig.4  TEM image of 6061 alloy ECAPed at 170℃: (a) TEM image; (b) histogram of grain size distribution
Fig.5  TEM images of 6061 alloy ECAPed at 170℃: (a) precipitates; (b) dislocation and precipitates
Fig.6  Engineering stress-stain curves of the 6061 alloy in different conditions
State σUTS / MPa σ0.2 / MPa δ /%
SST 151 67 31
T6 265 186 21
SST+ECAPed at RT 430 372 15
SST+ECAPed at 110℃ 450 425 19
SST+ECAPed at 170℃ 310 272 18
SST+ECAPed at 191℃ 326 285 20
Table 4  Mechanical properties of the alloy
Fig.7  True stress-stain curves of the 6061 alloy
Alloys and treatments σb/MPa σ0.2/MPa δ/% δu/%
6061 ECAP at RT [Our work] 430 372 15 13
6061 ECAP at 110°C [Our work] 450 425 19 15
6061 ECAP at 170°C [Our work] 310 272 18 11
6061 ECAP at 191°C [Our work] 326 285 20 12
6061 Pre-aging + CR + Post-aging[12] 560 542 9 7
6061 MF + Post-aging[14] 385 360 11 8
AA6060 HPT at RT[24] 525 475 6 0.8
6061 CR + WR + PA[28] 406 380 10 8
6061 HPT at RT[29] 690 660 2 5.5
Table 5  Strength-ductility of 6061 alloys processed by various SPD methods
Fig.8  Comparison of normalized strain hardening rate (Θ) vs. true stain (?) of 6061 ECAP alloys and recent literatures[24, 28]
Fig.9  Strength-ductility of 6000 series alloys processed by various SPD methods (a) yield strength vs. uniform elongation; (b) engineering stress vs. engineering strain
1 LI Hai, WANG Xiuli, SHI Zhixin, WANG Zhixiu, ZHENG Ziqiao, Precipitation behaviors of Al-Mg-Si- (Cu) aluminum alloys during continuous heating, Trans. Nonferrous Met. Soc. China, 21(9), 2028(2011)
1 (李海, 王秀丽, 史志欣, 王芝秀, 郑子樵, Al-Mg-Si-(Cu)铝合金在连续升温中的析出行为, 中国有色金属学报, 21(9), 2028(2011))
2 I. Sabirov, M. Y. Murashkin, R. Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Mater. Sci. Eng., 560(10), 1(2013)
3 JIANG Tinghui, LIU Manping, XIE Xuefeng, WANG Jun, WU Zhenjie, LIU Qiang, Hans J.Roven, Grain boundary structure of Al-Mg alloys processed by high pressure torsion, Chinese Journal of Materials Research, 28(5), 371(2014)
3 (蒋婷慧, 刘满平, 谢学锋, 王俊, 吴振杰, 刘强, Hans J.Roven, 高压扭转大塑性变形Al-Mg合金中的晶界结构, 材料研究学报, 28(5), 371(2014))
4 C. H. Liu, X. L. Li, S. H. Wang, J. H. Chen, Q. Teng, J. Chen, Y. Gu, A tuning nano-precipitation approach for achieving enhanced strength and good ductility in Al alloys, Mater. Design, 54, 144(2014)
5 S. Chen, Y. H. Zhao, Y. T. Zhu, E. Ma, Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation, Acta Mater., 55(17), 5822(2007)
6 LI Xiao, YANG Ping, LI Jizhong, DING Hua, Precipitation behavior, texture and mechanical properties of AZ80 magnesium alloy produced by equal channel angular extrusion, Chinese Journal of Materials Research, 24(1), 1(2010)
6 (李萧, 杨平, 李继忠, 丁桦, 等通道挤压 AZ80镁合金的析出行为和性能, 材料研究学报, 24(1), 1(2010))
7 P. N. Rao, B. Viswanadh, R. Jayaganthan, Effect of cryorolling and warm rolling on precipitation evolution in Al 6061 alloy ling and warm rolling on precipitation evolution in Al 6061 alloy, Mater. Sci. Eng., 606, 1(2014)
8 H. J. Roven, M. P. Liu, J. C. Werenskiold, Dynamic precipitation during severe plastic deformation of an Al-Mg-Si aluminium alloy, Mater. Sci. Eng., 483, 54(2008)
9 LI Hai, MAO Qingzhong, WANG Zhixiu, MIAO Fenfen, FANG Bijun, SONG Renguo, ZHENG Ziqiao, Effect of the thermo-mechanical treatment of pre-ageing, cold-rolling and re-ageing on microstructures and mechanical properties of 6061 Al alley, Acta Metall. Sin., 50(10), 1244(2014)
9 (李海, 毛庆忠, 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵, 预时效+冷轧变形+再时效对6061 铝合金微观组织和力学性能的影响, 金属学报, 50(10), 1244(2014))
10 V. Fallash, A. Korinek, N. Ofori-Opoku, B. Raeisinia, M. Gallerneault, N. Provatas, S. Esmaeili, Atomic-scale pathway of early-stage precipitation in Al-Mg-Si alloys, Acta Mater., 82, 57(2015)
11 M. Zha, Y. Li, R. H. Mathiesen, R. Bjorge, H. J. Roven, Achieve high ductility and strength in an Al-Mg alloy by severe plastic deformation combined with inter-pass annealing, Mater. Sci. Eng., 598, 41(2014)
12 Z. Wang, H. Li, F. Miao, B. Fang, R. Song, Z. Zheng, Improving the strength and ductility of Al-Mg-Si-Cu alloys by a novel thermo-mechanical treatment, Mater. Sci. Eng., 607, 313(2014)
13 Y. H. Zhao, X. Z. Liao, S. Chen, E. Ma, Y. T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys, Adv. Mater., 18(17), 2280(2006)
14 W. Yan, X. Liu, J. Huang, L. Chen, Strength and ductility in ultrafine-grained wrought aluminum alloys, Mater. Design, 49, 520(2013)
15 M. Furukawa, Z. Horita, M. Nemoto, T. G. Langdon, Processing of metals by equal-channel angular pressing, J. Mater. Sci., 36(12), 835(2001)
16 JIN Man, SHAO Guangjie, Effect of Cu addition on precipitation phases at early stage in 6082 Al-Mg-Si alloy aged, Trans. Nonferrous Met. Soc. China, 19(1), 1(2009)
16 (金曼, 邵光杰, Cu 对 6082Al-Mg-Si 合金时效初期析出相的影响, 中国有色金属学报, 19(1), 1(2009))
17 S. K. Panigrahi, R. Jayaganthan, V. Pancholi, M. Gupta, A DSC study on the precipitation kinetics of cryorolled Al 6063 alloy, Mater. Chem. Phys., 122, 188(2010)
18 J. Buha, R. N. Lumley, A. G. Crosky, K. Hono, Secondary precipitation in an Al-Mg-Si-Cu alloy, Acta Mater., 55(9), 3015(2007)
19 L. Zhen, S. B. Kang, DSC analyses of the precipitation behavior of two Al-Mg-Si alloys naturally aged for different times, Materials Letters, 37(6), 349(1998)
20 M. P. Liu, Z. J. Wu, R. Yang, J. T. Wei, Y. D. Yu, P. C. Skaret, H. J. Roven, DSC analyses of static and dynamic precipitation of an Al-Mg-Si-Cu aluminum alloy, Progress in Natural Science: Materials International, 25(2), 153(2015)
21 M. P. Liu, T. H. Jiang, J. Wang, Q. Liu, Z. J. Wu, Y. D. Yu, P. C. Skaret, H. J. Roven, Aging behavior and mechanical properties of 6013 aluminum alloy processed by severe plastic deformation, Trans. Nonferrous Met. Soc. China, 24(12), 3858(2014)
22 T. Ungár, Characterization of nanocrystalline materials by X-ray line profile analysis, J. Mater. Sci., 42(5), 1584(2007)
23 M. Cai, D. P. Field, G. W. Lorimer, A systematic comparison of static and dynamic ageing of two Al-Mg-Si alloys, Mater. Sci. Eng., 373(1), 65(2004)
24 G. Sha, K. Tugcu, X. Z. Liao, P. W. Trimby, M. Y. Murashkin, R. Z. Valiev, S. P. Ringer, Strength, grain refinement and solute nanostructures of an Al-Mg-Si alloy (AA6060) processed by high-pressure torsion, Acta Mater., 63, 169(2014)
25 J. W. Martin, Precipitation Hardening (Oxford, Butterworth-Heinemann, 1998)p.78
26 M. J. Starink, S. C. Wang, A model for the yield strength of overaged Al-Zn-Mg-Cu alloys, Acta Mater., 51(17), 5131(2003)
27 Y. H. Zhao, X. Z. Liao, S. Cheng, E. Ma, Y. T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys, Advanced Materials, 18(17), 2280(2006)
28 R. Jayaganthan, Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and microstructure of Al 6061 alloy, Mater. Design, 39, 226(2012)
29 G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, R. Valiev, Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation, Philos. Mag. Lett., 88(6), 459(2008)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!