Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (12): 881-888    DOI: 10.11901/1005.3093.2015.12.881
Orginal Article Current Issue | Archive | Adv Search |
Effects of Carbide Inhibitor on Microstructures and Mechanical Properties of Ultrafine Grained Carbide Cement WC-2.5TiC-10Co
Wenguang WANG1,2,**(),Hejia ZHANG3,Quanzhao WANG2,Zongyi MA2,Liqing CHEN3
1. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

Wenguang WANG,Hejia ZHANG,Quanzhao WANG,Zongyi MA,Liqing CHEN. Effects of Carbide Inhibitor on Microstructures and Mechanical Properties of Ultrafine Grained Carbide Cement WC-2.5TiC-10Co. Chinese Journal of Materials Research, 2015, 29(12): 881-888.

Download:  HTML  PDF(8490KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By using high energy ball-milling and vacuum hot-pressed sintering techniques, ultrafine grained carbide cement WC-2.5TiC-10Co were prepared, and the effect of grain growth inhibitors Cr3C2, VC, TaC and NbC on microstructures and mechanical properties were studied by X-ray diffractometer, field emission scanning electron microscope (FESEM) and mechanical performance test. The results indicates that the particle size of the WC powder can be reduced to less than 0.2 μm from 0.6 μm after 30 h of high energy ball-milling at a rotation speed of 350 r/min and ball/powder ratio of 10: 1. After vacuum hot-pressed sintering at 1410℃ for 1h, no new reactive product formed revealed by XRD. When 0.45 %Cr3C2, 0.3 %VC, 0.5 %TaC or NbC were added to the carbide cement, a small quantity of abnormally coarsened WC grains occurred, while the fractured surfaces display loose and smooth. Analyzing the fractured surfaces indicate that cleavage cracking in coarsened WC grains was caused by concentrated stress and become the source of materials fracture. When the contents of inhibitors Cr3C2 and VC were both more increased 0.1%, the grain size of WC can be reduced less than 0.5 μm. In such a case, the fractured surfaces are intimate and step-like, while the bending strength can be increased by 20%. Inhibitors TaC and NbC have not pronounced effect on the preventing the WC grain growth, while the addition of NbC is most effective in improving the relative density of the carbide cement.

Key words:  metallic materials      powder metallurgy      ultrafine grained carbide cement      microstructure      mechanical properties      inhibitor     
Received:  15 January 2015     
Fund: *Supported by the Major Special Project, Ministry of Industry and Information Technology of China No. 2012ZX04003061.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.12.881     OR     https://www.cjmr.org/EN/Y2015/V29/I12/881

Sample WC TiC Co TaC NbC Cr3C2 VC
1 bal. 2.5 10 0.5 - 0.45 0.3
2 bal. 2.5 10 0.5 - 0.55 0.4
3 bal. 2.5 10 - 0.5 0.45 0.3
4 bal. 2.5 10 - 0.5 0.55 0.4
Table 1  The composition of hard alloy (%, mass fraction)
Fig.1  SEM image showing the morphologies of initially blended and ball-milled powder of WC-2.5TiC-10Co, (a) initial blended; (b) ball-milled for 15 h; (c) ball-milled for 30 h
Fig.2  (a) FESEM image of WC-2.5TiC-10Co composite powder, and the EDS patterns of (b) WC-Co and (c) WC-TiC-Co after ball-milling for 30 h
Sample Measured
density (g/cm3)
Relative
densities (%)
1 13.577 98.93
2 13.584 99.37
3 13.610 99.50
4 13.612 99.91
Table 2  The measured and relative densities of extra-fine grained carbide cement WC-2.5TiC-10Co
Fig.3  Mechanical properties of the extra-fine grained carbide cement WC-2.5TiC-10Co (a) HRA hardness; (b) bending strength
Fig.4  XRD spectrum of extra-fine grained carbide cement WC-2.5TiC-10Co
Fig.5  FESEM images showing microstructures of extra-fine grained carbide cement WC-2.5TiC-10Co, (a) Sample No.1, (b) Sample No.2, (c) Sample No.3, (d) Sample No.4
Fig.6  SEM images showing the fractured surfaces of extra-fine grained carbide cement WC-2.5TiC-10Co after three-point bending test, (a) Sample No.1, (b) Sample No.2, (c) Sample No.3, (d) Sample No.4
Fig.7  FESEM images showing the fractured surfaces of extra-fine grained carbide cement WC-2.5TiC-10Co after three-point bending test, (a) Sample No.1, (b) Sample No.2, (c) Sample No.3, (d) Sample No.4
1 G. S. Upadhyaya, Materials science of cemented carbides-an overview, Mater. Des., 22(6), 483(2001)
2 Ji Xiong, Zhixing Guo, Mei Yang, Weicai Wan, Guangbiao Dong, Tool life and wear of WC-TiC-Co ultrafine cemented carbide during dry cutting of AISI H13 steel, Ceram. Int., 39, 337(2013)
3 Dilek Duman, Hasan Gokce and Huseyin Cimenoglu, Synthesis, microstructure, and mechanical properties of WC-TiC-Co ceramic composites, J. Eur. Ceram. Soc., 32, 1427(2012)
4 Jianxin Deng, Yousheng Li, Wenlong Song, Diffusion wear in dry cutting of Ti-6Al-4V with WC-Co carbide tools, Wear, 265, 1776(2008)
5 Shan Quan, Li Zulai, Jiang Yehua, Zhou Rong, Sui Yudong, Chen Zhihui, Effect of Co Addition on Microstructure of Matrix in Tungsten Carbide Surface Reinforced Composite, Chinese J. Mater. Res., 26(5), 551(2012)
6 Lu Shanping, Guo Yi, The Effect of Brazing Parameters on The Properties of WC-Co/NiCrBSi Composite Coating, Chinese J. Mater. Res., 13(2), 188(1999)
7 ZHANG Zhi, DENG Gang, HOU Xianneng, The application of WC-base hard alloy to rolling equipment, Powder Metall. Technol., 14(3), 35(2004)
7 (张智, 邓钢, 侯先能, WC基硬质合金在轧钢机中的应用, 粉末冶金工业, 14(3), 35(2004))
8 Nobom Gretta Hashe, Johannes H. Neethling, Pearl R.Berndt, Hans-Olof Andren, Susanne Norgren, A comparison of the microstructures of WC-VC-TiC-Co and WC-VC-Co cemented carbides, Int. J. Refract. Met. Hard Mater., 25, 207(2007)
9 Berger S, Porat R, Rosen R., Nanocrystalline materials: a study of WC-based hard metals, Prog. Mater. Sci., 42, 311(1997)
10 Victor G.Zavodinsky, Ab intio study of inhibitors influence on growth of WC crystallites in WC/Co hard alloys, Int. Journal of Refractory Metals and Hard Materials, 31, 263-265(2012)
11 ZHANG Shouquan, Sintering behavior of ultra-fine grain cemented carbides with 0.2 μm sized grain, Mater. Sci. Eng. Powder Metall., 14(4), 237(2009)
11 (张守全, 0.2微米级超细晶硬质合金的烧结行为, 粉末冶金材料科学与工程, 14(4), 237(2009))
12 T. Kagnaya, C. Boher, L. Lambert, M. Lazard, T. Cutard, Microstructural analysis of wear micromechanisms of WC-6Co cutting tools during high speed dry machining, Int. J. Refract. Met. Hard Mater., 42, 151(2014)
13 H. A.Abdel-Aal, M. Nouari, M. El Mansori, Tribo-energetic correlation of tool thermal properties to wear of WC-Co inserts in high speed dry machining of aeronautical grade titanium alloys, Wear, 266, 432(2009)
14 Z. N. Farhat, Microstructural characterization of WC-TiC-Co cutting tools during high-speed machining of P20 mold steel, Mater. Charact., 51, 117(2003)
15 ZHANG Chongcai, YANG Wei, Influence of TaC on the performance of high titanium submicron W-Ti-Co cemented carbide, Powder Metall. Technol., 32(1), 14(2014)
15 (张崇才, 杨伟, TaC对高钛亚微米钨钛钴硬质合金性能的影响, 粉末冶金技术, 32(1), 14(2014))
16 Jonathan Weidow, Hans-Olof Andrén, Grain and phase boundary segregation in WC-Co with TiC, ZrC, NbC or TaC additions, Int. J. Refract. Met. Hard Mater., 29, 38(2011)
17 Shiwei Huang, Ji Xiong, Zhixing Guo, Weicai Wan, Limei Tang, Hua Zhong, Wei Zhou, Bitong Wang, Oxidation of WC-TiC-TaC-Co hard materials at relatively low temperature, Int. J. Refract. Met. Hard Mater., 48, 134(2015)
18 M. Mmahmoodan, H. Allakbarzadeh, R. Gholamipour, Sintering of WC-10%Co nano powders containing TaC and VC grain growth inhibitors, Trans.Nonferrous Met. Soc. China, 21, 1080(2011)
19 Farid Akhtar, Islam S. Humail, S.J. Askari, Jianjun Tian,Guo Shiju, Effect of WC particle size on the microstructure, mechanical properties and fracture behavior of WC-(W, Ti, Ta)C-6 wt%Co cemented carbides, Int. J. Refract. Met. Hard Mater., 25, 405(2007)
20 Kyong H. Lee, Seung I. Cha, Byung K. Kim, Soon H.Hong, Effect of WC/TiC grain size ratio on microstructure and mechanical properties of WC-TiC-Co cemented carbides, Int. J. Refract. Met. Hard Mater., 24, 109(2006)
21 Byung-Kwon Yoon, Bo-Ah Lee, Suk-Joong L.Kang, Growth behavior of rounded (Ti, W)C and faceted WC grains in a Co matrix during liquid phase sintering, Acta Materialia, 53, 4677(2005)
22 Nobom G. Hashe, Johannes H.Neethling, Hans-Olof Andren, Susanne Norgren, Pearl R. Berndt, The influence of sintering in nitrogen gas on the microstructure of a WC-VC-TiC-Co cemented carbide, Int. J. Refract. Met. Hard Mater., 26, 404(2008)
23 FU Xiancai, SHEN Wenxia, YAO Tianyang, HOU Wenhua, Physical Chemistry, 5th edition (Beijing, Higher Education Press, 2005) P.235
23 (傅献彩, 沈文霞, 姚天杨, 侯文华, 物理化学(上册), 第五版, (北京, 高等教育出版社, 2005) P.235)
24 T. Yamamoto, Y. Ikuhara, T. Sakuma, High resolution transmission electron microscopy study in VC-doped WC-Co compound, Sci. Technol. Adv. Mater., 1, 97(2000)
25 S. Lay, S. Hamar-Thibault, A. Lackner, Location of VC in VC, Cr3C2 codoped WC—Co cermets by HREM and EELs, Int. J. Refract. Met. Hard Mater., 20, 61(2002)
26 C. W. Morton, D. J. Wills, K. Stjernnberg, The temperature ranges of maximum effectiveness of grain growth inhibitors in WC alloy, Int. J. Refract. Met. Hard Mater., 23, 287(2005)
27 A. Petersson, J. Agren, Sintering shrinkage of WC-Co materials with bimodal grain size distributions, Acta Mater., 53, 1665(2005)
28 Guoqiang Li, Yi Zhao, SuSeng Pang, Analytical modeling of particle size and cluster effects on particulate-filled composite, Mater. Sci. Eng., A271, 43(1999)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!