Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (8): 561-566    DOI: 10.11901/1005.3093.2014.136
Current Issue | Archive | Adv Search |
Mechanical Properties of Cyanate Ester/Epoxy Resins Reinforced with Functionalized Multi-wall Carbon Nanotubes
Jingwen LI1,2,Zhixiong WU1,Chuanjun HUANG1,Laifeng LI1,**()
1. Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
2. University of Chinese Academy of Sciences, Beijing 100049
Cite this article: 

Jingwen LI,Zhixiong WU,Chuanjun HUANG,Laifeng LI. Mechanical Properties of Cyanate Ester/Epoxy Resins Reinforced with Functionalized Multi-wall Carbon Nanotubes. Chinese Journal of Materials Research, 2014, 28(8): 561-566.

Download:  HTML  PDF(1345KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Chemical oxidation and plasma polymerization were employed to functionalize the surfaces of multi-wall carbon nanotubes (MWCNTs). Then MWCNTs reinforced cyanate ester/epoxy resin nanocomposites were manufactured. The effect of the two functionalization processes on mechanical properties of the nanocomposite was investigated in terms of tensile test at room and cryogenic temperatures and observation of their fracture surfaces with SEM. Results show that the plasma polymerized MWCNTs (plasma-MWCNTs) may be dispersed more homogenously in the matrix and possess stronger interfacial bonding with the resin in comparison with the chemical oxidized ones. With addition of 0.3%(mass fraction) plasma-MWCNTs, the tensile strength, tensile modulus and impact strength of nanocompoistes at room and cryogenic temperature were simultaneously improved compared with the pure cyanate ester/epoxy resin matrix.

Key words:  composites      carbon nanotubes      mechanical properties     
Received:  24 March 2014     
Fund: *Supported by National Natural Science Foundation of China No.51377156, National Magnetic Confinement Fusion Science Program No.2011GB112003, and Key Laboratory of Cryogenics, TIPC, CAS, No.CRYOQN201303.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.136     OR     https://www.cjmr.org/EN/Y2014/V28/I8/561

Fig.1  XPS spectroscopy of different MWCNTs(a), XPS C1s spectrum of as-received MWCNTs (b), MWCNTs-COOH (c) and MWCNT-plasma (d)
Sample Atomic concentration /%
C 1s O 1s
As-received MWCNTs 98.32 1.68
MWCNTs-COOH 97.17 2.83
MWCNTs-plasma 93.24 6.67
Table 1  Atomic concentration of carbon and oxygen determined by XPS experiment data
Fig.2  Fracture surface of different MWCNT/CE/EP nanocomposites, (a) as-received MWCNTs, (b) MWCNTs-COOH, (c) MWCNTs-plasma, (d) as-received MWCNTs with high magnification, (e) MWCNTs-plasma with high magnification
Fig.3  Tensile strength (a) and tensile modulus (b) of MWCNT/CE/EP nanocomposites at RT and 77 K
Fig.4  Impact strength of MWCNT/CE/EP nanocomposites at RT and 77 K
1 S. Iijima,Helical microtubules of graphitic carbon, Nature, 354(6348), 56(1991)
2 R. S. Ruoff, D. C. Lorents,Mechanical and thermal properties of carbon nanotubes, Carbon, 33(7), 925(1995)
3 E. T. Thostenson, Z. Ren, T.-W. Chou,Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, 61(13), 1899(2001)
4 S. Niyogi, M. Hamon, D. Perea, C. Kang, B. Zhao, S. Pal, A. Wyant, M. Itkis, R. Haddon,Ultrasonic dispersions of single-walled carbon nanotubes, Journal of Physical Chemistry B, 107(34), 8799(2003)
5 X. Gong, J. Liu, S. Baskaran, R. D. Voise, J. S. Young,Surfactant-assisted processing of carbon nanotube/polymer composites, Chemistry of Materials, 12(4), 1049(2000)
6 M. K. V. Datsyuk, K. Papagelis,Chemical oxidation of multiwalled carbon nanotubes, Carbon, (46), 833(2008)
7 S. Ruan, P. Gao, X. Yang, T. Yu,Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes, Polymer, 44(19), 5643(2003)
8 D. W. Steuerman, A. Star, R. Narizzano, H. Choi, R. S. Ries, C. Nicolini, J. F. Stoddart, J. R. Heath,Interactions between conjugated polymers and single-walled carbon nanotubes, Journal of Physical Chemistry B, 106(12), 3124(2002)
9 R. Prokopec, K. Humer, R. Maix, H. Fillunger, H. Weber,Mechanical strength of various cyanate ester/epoxy insulation systems after fast neutron irradiation to the ITER design fluence and beyond, Fusion Engineering and Design, 82(5), 1508(2007)
10 R. Prokopec, K. Humer, R.K. Maix, H. Fillunger, H.W. Weber,Influence of various catalysts on the radiation resistance and the mechanical properties of cyanate ester/epoxy insulation systems, Fusion Engineering and Design, 84(7), 1544(2009)
11 J. Wang, G. Liang,H Yan, S. He, Mechanical and thermal properties of functionalized multiwalled carbon nanotubes/cyanate ester composite, Polymer Engineering & Science, 49(4), 680(2009)
12 C. H. Tseng, C. C. Wang, C. Y. Chen,Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites, Chemistry of Materials, 19(2), 308(2007)
13 A. Bell,The mechanism and kinetics of plasma polymerization, Plasma Chemistry III, 43(1980)
14 I. D. Rosca, F. Watari, M. Uo, T. Akasaka,Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, 43(15), 3124(2005)
15 F. Sawa, S. Nishijima, T. Okada,Molecular design of an epoxy for cryogenic temperatures, Cryogenics, 35(11), 767(1995)
16 M. Abdalla, D. Dean, D. Adibempe, E. Nyairo, P. Robinson, G. Thompson,The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite, Polymer, 48(19), 5662(2007)
17 M. Hussain, A. Nakahira, S. Nishijima, K. Niihara,Evaluation of mechanical behavior of CFRC transverse to the fiber direction at room and cryogenic temperature, Composites Part A, 31(2), 173(2000)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[4] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[9] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[10] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[14] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!