Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (7): 528-534    DOI: 10.11901/1005.3093.2013.877
Current Issue | Archive | Adv Search |
Effect of Heat Treatment on Microstructure of Interfacial Diffusion Layer of Cu/Al Composite Laminate Prepared by Cold Rolling
Xiaojiao ZUO,Xiaoguang YUAN(),Hongjun HUANG,Huan LIU
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110780
Cite this article: 

Xiaojiao ZUO,Xiaoguang YUAN,Hongjun HUANG,Huan LIU. Effect of Heat Treatment on Microstructure of Interfacial Diffusion Layer of Cu/Al Composite Laminate Prepared by Cold Rolling. Chinese Journal of Materials Research, 2014, 28(7): 528-534.

Download:  HTML  PDF(5600KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of heat treatment on the microstructure of the interfacial diffusion layer of Cu/Al composite laminate prepared by cold rolling was investigated by means of SEM, TEM and micro-XRD The results show that an interfacial diffusion layer may form soon after heat treatment at high temperature; then as the heating time lengthened, the interfacial diffusion layer growths gradually from the original single-layer to become a three-layed one, while the heating time further lengthened, the morphology of the interfacial diffusion layer kept more or less unchanged besides a slight thickening; the interfacial diffusion layer consists of a layer of Al-Cu solid solution with intermetallic compound q(Al2Cu) nearby the Al side, a layer of h2(AlCu) in the middle and a layer of Cu-Al solid solution with intermetallic compound g2(Al4Cu9) nearby the Cu side.

Key words:  metallic materials      Cu/Al composite laminate      heat treatment      diffusion layer      intermetallic compound     
Received:  20 November 2013     
Fund: *Supported by National Natural Science Foundation of China No.51074108.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.877     OR     https://www.cjmr.org/EN/Y2014/V28/I7/528

Fig.1  Boundary layer morphology of Al-Cu composite laminate as rolled
Fig.2  Relationship of the Al-Cu composite laminate boundary morphology with holding time at 300℃
Fig.3  Image of Al-Cu composite laminate boundary after 300℃-10 min heat-treatment
Fig.4  Microstructure of boundary diffusion layer at Al side (a) and Cu side (b) after 300℃-10 h heat-treatment
Fig.5  Analysis of Al (a) and Cu (b) element after 300℃-10 h hea-treatment at boundary diffusion layer
Fig.6  

300℃-10 h热处理后界面层铝侧和铜侧中的金属间化合物形态及能谱分析

Fig.7  The microstructure of Cu/Al composite laminate boundary diffusion layer after 300℃-10 h heat treatment
Fig.8  Diffraction location(a) and two dimension diffraction in situ with low angle (b) and high angle (c) of the Al-Cu composite laminate boundary after 300℃-10 h heat treatment
Fig.9  Analysis atlas of micro area-X diffraction at boundary layer after 300℃-10 h heat treatment
Fig.10  Electron diffraction analyze in boundary layer of Al side (a) and Cu side (b) by 300℃-10 h heat treatment
Fig.11  The boundary diffusion layer structure of Al-Cu composite laminate by cold rolling after heat treatment
1 HUANG Hongjun,YUAN Xiaoguang, Study on diffusion process and microstructure of Cu-Al clad metal sheet interface in heat-treatment, Journal of Northeastern University (Natural Science), 31(6), 31(2010)
1 (黄宏军, 袁晓光, 铜铝轧制复合板界面扩散过程与组织变化, 东北大学学报(自然科学版), 31(6), 31(2010))
2 CHEN Yanjun,ZHOU Shiping, YANG Futao, LIN Dezhong, MENG Liang, New development of processing techniques for laminates, Journal of Materials Science and Engineering, 20(1), 140(2010)
2 (陈燕俊, 周世平, 杨富陶, 林德仲, 孟 亮, 层叠复合材料加工技术新进展, 材料科学与工程, 20(1), 140(2010))
3 ZU Guoyin,LI Xiaobing, DING Mingming, YU Jiuming, Investigating deformation behavior of asymmetrically rolled Cu/Al bimetal clad sheets, Journal of Northeastern University (Natural Science), 32(5), 675(2011)
3 (祖国胤, 李小兵, 丁明明, 于九明, 异步轧制铜/铝双金属复合板变形行为的研究, 东北大学学报(自然科学版), 32(5), 675(2011))
4 ZHENG Yuanmou,The explosion welding and welding of dissimilar metals, Welding Technique(Craft and New Technology), 30(5), 25(2001)
4 (郑远谋, 爆炸焊与异种金属的焊接, 焊接技术(工艺与新技术), 30(5), 25(2001))
5 E. Takeuchi, M. Zeze, H. Tanaka,Continuous casting of clad steel slab with level magnetic field brake , Steel Making Conference Proceedings, 225, 1996
6 DAI Guojun,Analysis of the process for plating Cu-Ti Co-metal wave-guide fimes on Li-ferrite surface, Research and Exploration in Laboratory, 4, 19(2004)
6 (戴国钧, 锂铁氧体表面沉积Cu-Ti复合金属波导膜系的工艺分析研究, 实验室研究与探索, 4, 19(2004))
7 SUN Deqin,WU Chunjing, XIE Jianxin, Research and development of forming technologies for metallic composite wires, Materials Review, 17(5), 65(2003)
7 (孙德勤, 吴春京, 谢建新, 金属复合线材成形工艺的研究开发概况, 材料导报, 17(5), 65(2003))
8 SUN Deqin,XIE Jianxin, WU Chunjing, The forming technology and development trend of clad plate, Metal Forming Technology, 21(2), 19(2003)
8 (孙德勤, 谢建新, 吴春京, 复合板的成形技术与发展趋势, 金属成形工艺, 21(2), 19(2003))
9 YANG Guiping,WANG Zhixiang, Study on complex interface bonding strength in Al/Cu bimetal tube drawing, Light Alloy Fabrication Technology, 26(5), 30(1998)
9 (杨贵平, 王智祥, 铝铜双金属管拉伸复合界面强度的研究, 轻合金加工技术, 26(5), 30(1998))
10 I. Takeshi, H. Kazuyuki, F. Masahiro, N. Toru,Improvement of the bonding strength of Al/Cu transition joint made by single-shot explosive welding technique using Cu intermediate plate, Journal of the Japan Welding Society, 12, 77(1994)
11 Y. C. Ha, J. H. Ha, H. G. Lee, D. K. Kim, B. I. Lee,Electrochemical and optical characterization of the corrosion resistivity of explosively bonded Al-Cu bimeta, Materials Science Forum, 475(2005)
12 Hiroshikzto,Shojiabe, ToshihikoTomizawa, Interfacial structures and mechanical properties of steel-Ni and steel-Ti diffusion bonds[J], Journal Of Materials Science,(32), 5225(1997)
13 M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H. Shakur Shahabi, K. Janghorban,Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process, Composites Science and Technology, 68, 2003(2008)
14 HUANG Hongjun,LV Lin, MI Bingxue, ZUO Xiaojiao, LIU Huan, YUAN Xiaoguang, Effects of diffusion heat treatment on cold-rolled Cu/Al Composite Laminates, Journal of Northeastern University (Natural Science), 33(2), 91(2012)
14 (黄宏军, 吕 琳, 蜜冰雪, 左晓姣, 刘 欢, 袁晓光, 扩散热处理对冷轧铜铝复合板复合界面的影响, 东北大学学报(自然科学版), 33(2), 91(2012)
15 L. Yang, B. X. Mi, L. Lv,Formation sequence of interface intermetallic phases of cold rolling Cu/Al clad metal sheet in annealing Process, Switzerland: Trans. Tech. Publications, 600(2013)
16 CHEN Zhiyuan,Characterisation of clad roll bonding Al-Cu bimetal, Doctoral Dissertation, National Cheng Kung University, 2007
16 (陈志远, 铜铝轧延复合金属特性研究, 博士学位论文, 国立成功大学, 2007)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!