Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (5): 362-370    DOI: 10.11901/1005.3093.2013.960
Current Issue | Archive | Adv Search |
Dynamic Recrystallization Behavior and Grain Size Control of GH4706 Superalloy
Shuo HUANG1,2,Lei WANG1,**(),Beijiang ZHANG2,Wenyun ZHANG2,Guangpu ZHAO2
1. Key Lab for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819
2. Department of High-temperature Materials, Central Iron and Steel Research Institute, Beijing 100081
Cite this article: 

Shuo HUANG,Lei WANG,Beijiang ZHANG,Wenyun ZHANG,Guangpu ZHAO. Dynamic Recrystallization Behavior and Grain Size Control of GH4706 Superalloy. Chinese Journal of Materials Research, 2014, 28(5): 362-370.

Download:  HTML  PDF(8391KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of deformation temperature and strain on the microstructure of GH4706 superalloy was studied by means of double-cone samples compression combined with finite element numerical (FEM) simulation. The results show that the dynamic recrystallization (DRX) mechanism of GH4706 superalloy is a discontinuous process associated with a strain induced grain boundaries bulging leading to the formation of nuclei. It is found that the critical temperature (TDRX) is 975℃, while the critical strain (εDRX) of DRX depends on both the solve of η phase and deformation generating heat. When the deformation temperature is slight lower than the TDRX, η phase will be partially retained in the alloy, which then hinders the migration of sub-grain or grain boundaries. Therefore, finer grain of GH4706 superalloy can be obtained by deforming with a larger strain at a temperature below TDRX.

Key words:  metallic materials      GH4706 alloy      double cone sample      microstructure      dynamic recrystallizaiton     
Received:  19 December 2013     
Fund: *Supported by National High Technology Research and Development Program of China No. SS2012AA030801, National Basic Research Program of China No. 2010CB631203, and Common Technical Research Aircraft Key Component Forming No. 2012ZX04010-081.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.960     OR     https://www.cjmr.org/EN/Y2014/V28/I5/362

Fig.1  Macrostructure of GH4706 alloy bar (a) and image of the double cone sample (b)
Fig.2  Strain (a) and temperature (b) distribution maps of the double cone sample deformed at 950℃
Fig.3  Macrostructures and true strain distribution map of the zone indicated by the dashed box in Fig. 2a of double cone samples deformed at 950℃ (a) and 1010℃ (b), respectively
Fig.4  Microstructures of the double cone samples with the strain of 0.2 (a, d), 0.6 (b, e), 1.0 (c, f) deformed at 950℃ (a-c) and 1010℃ (d-f)
Fig.5  The effects of deformation temperature and strain on the DRX fraction (a) and DRX grain size (b)
Fig.6  Typical SEM (a, d), EBSD (b, e) and TEM (c, f) images of the microstructures at the critical strain deformed at 950℃ (a-c) and 980℃ (d-f)
Fig.7  The relationship of critical strain of recrystallization and deformation temperature
Fig.8  Typical SEM (a, b) and TEM (c-f) images at the strain of 0.2 (a, c, d) and 1.0 (b, e, f) after deformed at 950℃
Fig.9  Effects of deformation temperature and strain on the content of η phase
Fig.10  Relationship of deformation temperature and DRX grain size at a strain of 1.0
Fig.11  Effects of deformation temperature and strain on the average grain size after standard heat treatment
1 P. W. Schilke, R. C. Schwant,Alloy 706 use, process optimization, and future directions for GE gas turbine rotor materials, in: Superalloys 718, 625, 706 and Various Derivatives (Warrendale, PA, TMS-AIME, 2001) p.521-530
2 P. W. Schilke, J. Pepe, R. C. Schwant,Alloy 706 metallurgy and turbine wheel application superalloys, in:Superalloys 718, 625, 706 and Various Derivatives (Warrendale, PA, TMS-AIME, 1994) p.1-12
3 T. M. Pollock, S. Tin,Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, Journal of Propulsion and Power, 22(2), 261(2006)
4 W. Hoffelner,Damage assessment in structural metallic materials for advanced nuclear plants, Journal of Materials Science, 45(9), 2247(2010)
5 G. W. Kuhlman, A. K. Chakrabarti, R. A. Beaumont, J. F. Radavich,Microstructure-mechanical properties relationships in Inconel 706 superalloy in:Superalloys 718, 625, 706 and Various Derivatives (Warrendale, PA, TMS-AIME, 1994) p. 441-450
6 S. C. Medeiros, Y. V. R. K. Prasad, W. G. Frazier, R. Srinivasan,Microstructure modeling of metadynamic recrystallization in hot working of IN718 superalloy, Materials Science and Engineering A, 293(1), 198(2000)
7 D. Furrer, H. Fecht,Ni-based superalloys for turbine discs, JOM, 51(1), 14(1999)
8 H. T. Lee, W.H. Hou,Fine grains forming process, mechanism of fine grain formation and properties of superalloy 718, Materials Transactions, 53(4), 716(2012)
9 ZHANG Beijiang,ZHAO Guangpu, XU Guohua, FENG Di, Hot deformation behavior and microstructure evolution of superalloy GH742, Acta Metallurgical Sinica, 41(11), 1207(2005)
9 (张北江, 赵光普, 胥国华, 冯 涤, GH742合金热变形行为与微观组织演化, 金属学报, 41(11), 1207(2005))
10 CHEN Liqing,ZHAO Yang, XU Qiuxiang, LIU Xianghua, Dynamic recrystallizaiton and precipitation behaviors of a kind of low carbon V-microalloyed steel, Acta Metallurgical Sinica, 46(10), 1215(2010)
10 (陈礼清, 赵 阳, 徐香秋, 刘相华, 一种低碳钒微合金钢的动态再结晶与析出行为, 金属学报, 46(10), 1215(2010))
11 Y. Wang, L. Zhen, W.Z. Shao, X.M. Zhang,Hot working characteristics and dynamic recrystallization of Delta-processed superalloy 718, Journal of Alloys Compounds, 474(1-2), 341(2009)
12 F. Torster, G. Baumeister, J. Albrecht, G. Lütjering, D. Helm, M. A. Daeubler,Influence of grain size and heat treatment on the microstructure and mechanical properties of the nickel-base superalloy U720 LI, Materials Science and Engineering A, 234, 189(1997)
13 J. H. Moll, G. H. Maniar, D. R. Muzyka,The microstructure of a new Fe-Ni-Base superalloy, Metallurgical Transactions, 2, 2141(1971)
14 S. V. Thamboo,Thermomechanical behavior and microstructure development of alloy 706, in:Superalloys 718, 625, 706 and Various Derivatives (Warrendale, PA, TMS-AIME, 1997) p.211-217
15 A. Kermanpur, S. Tin, P. D. Lee, M. Mclean,Integrated modeling for the manufacture of aerospace discs: grain structure evolution, JOM, 56(3), 72(2004)
16 N. Dudova, A. Belyakov, T. Sakai, R. Kaibyshev,Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working, Acta Meterialia, 58, 3624(2010)
17 S. Mitsche, C. Sommitsch, D. Huber, M. Stockinger, P. Poelt,Assessment of dynamic softening mechanisms in Allvac 718Plus by EBSD analysis, Materials Science and Engineering A, 528(10-11), 3754(2011)
18 M. M. Morra, P. Jepson,Uniformity of properties in alloy 706 through control of forging and heat treatment, in:Superalloys 718, 625, 706 and Various Derivatives (Warrendale, PA, TMS-AIME, 1997) p.279-290
19 S. C. Medeiros, Y. V. R. K. Prasad, W. G. Frazier, R. Srinivasan,Modeling grain size during hot deformation of IN718, Scripta materialia, 42(1), 17(2000)
20 H. J. Mcqueen, N. D. Ryan,Constitutive analysis in hot working, Materials Science and Engineering A, 332(1-2), 43(2002)
21 E. I. Poliak, J. J. Jonas,A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallizaiotn, Acta Materialia, 44(1), 127(1996)
22 Y. Liu, R. Hu, J. S. Li, H. C. Kou, H.W. Li,Deformation characteristics of as-received Hyanes 230 nickel base superalloy, Materials Science and Engineering A, 497(1-2), 283(2008)
23 R. Srinivasan, V. Ramnarayan, U. Deshpande, V. Jain, I. Weiss,Computer simulation of the forging of fine grain IN-718 alloy, Metallurgical Transactions A, 24(9), 2061(1993)
24 R. Raj,Development of a processing map for use in warm-forging and hot-forming processes, Metallurgical Transactions A, 12(6), 1089(1981)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!