|
|
Grain Boundary Structure of Al–Mg Alloys Processed by High Pressure Torsion |
Tinghui JIANG1,Manping LIU1,**( ),Xuefeng XIE1,Jun WANG1,Zhenjie WU1,Qiang LIU1,J. Roven Hans2 |
1. School of Materials Science and Engineering, Jiangsu Province Key Laboratory of High-end Structural Materials, Jiangsu University, Zhenjiang 212013 2. Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway |
|
Cite this article:
Tinghui JIANG,Manping LIU,Xuefeng XIE,Jun WANG,Zhenjie WU,Qiang LIU,J. Roven Hans. Grain Boundary Structure of Al–Mg Alloys Processed by High Pressure Torsion. Chinese Journal of Materials Research, 2014, 28(5): 371-379.
|
Abstract The structure of dislocation and grain boundary (GB) in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) was characterized by means of transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp GBs and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. These dislocations appear as dipoles and loops. Different GB structures including low/high angle non-equilibrium GBs, low angle equilibrium GBs and high angle Σ 9 equilibrium boundaries are characterized by HRTEM. The roles of the very high local dislocation density, the dislocation cells and the non-equilibrium GBs in grain refinement during HPT are analyzed and the refinement mechanisms associated with these structural features have been proposed.
|
Received: 30 September 2013
|
Fund: *Supported by National Natural Science Foundation of China No.50971087, Natural Science Foundation of Jiangsu Province No. BK2012715, Senior Talent Research Foundation of Jiangsu University Nos. 11JDG070 & 11JDG140,Jiangsu Province Key Laboratory of High- end Structural Materials No. hsm1301, and Foundation of the Jiangsu Province Key Laboratory of Materials Tribology No. Kjsmcx2011004. |
1 | I. Sabirov, M. Y.Murashkin, R. Z.Valiev,Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Materials Science and Engineering A, 560(10), 1(2013) | 2 | R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov,Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 45(2), 103(2000) | 3 | M. P. Liu, H. J. Roven,High density hexagonal and rhombic shaped nanostructures in an fcc aluminum alloy induced by severe plastic deformation at room temperature, Applied Physics Letters, 90(8), 3115(2007) | 4 | H. J. Roven, M. P. Liu, J. C. Werenskiold,Dynamic precipitation during severe plastic deformation of Al-Mg-Si aluminium alloy, Materials Science and Engineering A, 483, 54(2008) | 5 | P. V. Liddicoat, X. Z. Liao, Y. H. Zhao, Y. T. Zhu, M. Y. Murashkin, E. J. Lavernia, R. Z. Valoev, S. P. Ringer,Nanostructural hierarchy increases the strength of aluminium alloys, Nature Communications, 1, 63(2010) | 6 | L. J. Hu, S. J. Zhao,The effect of nanostructural hierarchy on the mechanical properties of aluminium alloys during deformation processes, Journal of Materials Science, 47(19), 6872(2012) | 7 | X. Y. Liu, J. B. Adams,Grain-boundary segregation in Al–10% Mg alloys at hot working temperatures, Acta Materialia, 46(10), 3467(1998) | 8 | X. Y. Liu, P. P. Ohotnicky, J. B. Adams, C. L. Rohrer, R. W. Hyland Jr,Anisotropic surface segregation in Al–Mg alloys, Surface Science, 373(2), 357(1997) | 9 | J. W. Zhang, M. J. Starink, N. Gao, W. L. Zhou, Effect of Mg addition on strengthening of aluminium alloys subjected to different strain paths in high pressure torsion, Materials Science and Engineering A, 528(4-5), 2093(2011) | 10 | K. M. Youssef, R. O. Scattergood, K. L. Murty, C. C. Koch,Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility, Scripta Materialia, 54(2), 251(2006) | 11 | F. Hou, X. Z. Liao, Y. T. Zhu, S. Dallek, E. J. Lavernia,Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling, Acta Materialia, 51(10), 2777(2003) | 12 | LU Ke,LIU Xuedong, HU Zhuangqi, Hall-Petch relation in nanocrystalline materials, Chinese Journal of Materials Research, 8(5), 385(1994) | 12 | (卢 柯, 刘学东, 胡壮麒, 纳米晶体材料的Hall-Petch关系, 材料研究学报, 8(5), 385(1994)) | 13 | WEI Yingjuan,YUAN Shouqian, ZHANG Bing, ZHANG Xifeng, Ultrafine grain Al and Al alloys processed by SPD, Light Alloy Fabrication Technology, 36(4), 49(2008) | 13 | (魏颖娟, 袁守谦, 张 兵, 张西锋, 大塑性变形制备超细晶粒铝及铝合金材料. 轻合金加工技术, 36(4), 49(2008)) | 14 | G. Sakai, Z. Horita, T. G. Langdon,Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion, Materials Science and Engineering A, 393(1), 344(2005) | 15 | Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, R. Z. Valiev, T. G.Langdon,An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy, Journal of Materials Research, 11(8), 1880(1996) | 16 | A. P. Zhilyaev, T. G. Langdon,Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science, 53(6), 893(2008) | 17 | M. P. Liu, H. J. Roven, M. Y. Murashkin, R. Z. Valiev, A. Kilmametov, Z. Zhang, Y. D. Yu,Structure and mechanical properties of nanostructured Al–Mg alloys processed by severe plastic deformation, Journal of Materials Science, 48(13), 4681(2013) | 18 | J. Y. Huang, Y. T. Zhu, H. Jiang, T. C. Lowe,Microstructures and dislocation configurations in nanostructured Cu processed by RCS, Acta Materialia, 49(9), 1497(2001) | 19 | R. Kaibyshev, K. Shipilova, F. Musin, Y. Motohashi,Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion, Materials Science and Engineering A, 396(1-2), 341(2005) | 20 | R. S. Musalimov, R. Z. Valiev,Dilatometric analysis of aluminium alloy with submicrometre grained structure, Scripta Metallurgica et Materialia, 27(12), 1685(1992) | 21 | R. Z. Valiev, V. Y. Gertsman, O. A. Kaibyshev,Grain boundary structure and properties under external influences, Physica Status Solidi, 97(1), 11(1986) | 22 | J. Y. Huang, X. Z. Liao, Y. T. Zhu, F. Zhou, E. J. Lavernia,Grain boundary structure of nanocrystalline Cu processed by cryomilling, Philosophical Magazine, 83(12), 1407(2003) | 23 | E. Ma, T. D. Shen, X. L. Wu,Nanostructured metals: Less is more, Nature Materials, 5(7), 515(2006) | 24 | X. L.Wu, E. MaY. T. Zhu,Deformation defects in nanocrystalline nickel, Journal of Materials Science, 42(5), 1427(2007) | 25 | M. Murayama, J. M. Howe, H. Hidaka, S. Takaki,Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe, Science, 295(5564), 2433(2002) | 26 | X. Z. Liao, J. Y. Huang, Y. T. Zhu, F. Zhou, E. J. Lavernia,Nanostructures and deformation mechanisms in a cryogenically ball-milled Al-Mg alloy, Philosophical Magazine, 83(26), 3065(2003) | 27 | HU Gengxiang, CAI Xun, Fundamentals of Material Science(Shanghai, Shanghai Traffic Press, 2000)p.111 | 27 | (胡赓祥, 蔡 珣, 材料科学基础, 第一版 (上海, 上海交通大学出版社, 2000)p.111) | 28 | R. Z. Valiev, V. Y. GertsmanO. A. Kaibyshev,Grain boundary structure and properties under external influences, Physica Status Solidi(a), 97(1), 11(1986) | 29 | Y. H. Zhao, J. F. Bingert, Y. T. Zhu, X. Z. Liao, R. Z. Valiev, Z. Horita, T. G. Langdon, Y. Z. Zhou, E. J. Lavernia,Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density, Applied Physics Letters, 92(8), 3(2008) | 30 | V. Randle,Twinning-related grain boundary engineering, Acta Materialia, 52(14), 4067(2004) | 31 | T. L. Daulton, T. J. Bernatowicz, R. S. Lewis, S. Messenger, F. J.Stadermann, S. Amari,Polytype distribution of circumstellar silicon carbide: Microstructural characterization by transmission electron microscopy, Geochimica et Cosmochimica Acta, 67(24), 4743(2003) | 32 | K. Ikeda, N. Takata, K. Yamada, F. Yoshida, H. Nakashima, N. Tsuji,Grain boundary structure in ARB processed copper, Materials Science Forum, 503, 925(2006) | 33 | R. Z. Valiev,Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Materials, 3(8), 511(2004) | 34 | M. Richert, H. P. Stuwe, M. J. Zehetbauer, J. Richert, R. Pippan, C.Motz, E. Schafler, Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression. Materials Science and Engineering A, 355(1-2), 180(2003) | 35 | R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe,Paradox of strength and ductility in metals processed bysevere plastic deformation, Journal of Materials Research, 17(1), 5(2002) | 36 | Y. T. Zhu, X. Z. Liao,Nanostructured metals: Retaining ductility, Nature Materials, 3(6), 351(2004) | 37 | R. Z. Valiev, N. A. Enikeev, T. G. Langdon,Towards superstrength of nanostructured metals and alloys, produced by SPD, Kovove Mater, 49, 1(2011) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|