Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (5): 371-379    DOI: 10.11901/1005.3093.2013.724
Current Issue | Archive | Adv Search |
Grain Boundary Structure of Al–Mg Alloys Processed by High Pressure Torsion
Tinghui JIANG1,Manping LIU1,**(),Xuefeng XIE1,Jun WANG1,Zhenjie WU1,Qiang LIU1,J. Roven Hans2
1. School of Materials Science and Engineering, Jiangsu Province Key Laboratory of High-end Structural Materials, Jiangsu University, Zhenjiang 212013
2. Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
Cite this article: 

Tinghui JIANG,Manping LIU,Xuefeng XIE,Jun WANG,Zhenjie WU,Qiang LIU,J. Roven Hans. Grain Boundary Structure of Al–Mg Alloys Processed by High Pressure Torsion. Chinese Journal of Materials Research, 2014, 28(5): 371-379.

Download:  HTML  PDF(7829KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The structure of dislocation and grain boundary (GB) in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) was characterized by means of transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp GBs and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. These dislocations appear as dipoles and loops. Different GB structures including low/high angle non-equilibrium GBs, low angle equilibrium GBs and high angle Σ 9 equilibrium boundaries are characterized by HRTEM. The roles of the very high local dislocation density, the dislocation cells and the non-equilibrium GBs in grain refinement during HPT are analyzed and the refinement mechanisms associated with these structural features have been proposed.

Key words:  metal materials      high pressure torsion      severe plastic deformation      aluminium alloys      grain boundary structure      non-equilibrium grain boundary      dislocation     
Received:  30 September 2013     
Fund: *Supported by National Natural Science Foundation of China No.50971087, Natural Science Foundation of Jiangsu Province No. BK2012715, Senior Talent Research Foundation of Jiangsu University Nos. 11JDG070 & 11JDG140,Jiangsu Province Key Laboratory of High- end Structural Materials No. hsm1301, and Foundation of the Jiangsu Province Key Laboratory of Materials Tribology No. Kjsmcx2011004.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.724     OR     https://www.cjmr.org/EN/Y2014/V28/I5/371

Fig.1  TEM images of typical grain structures observed in the HPT Al–Mg alloy: (a) bright–field image with a SAD pattern inset of AA5182 alloy; (b) dislocation free grain with sharp boundaries of AA5182 alloy; (c) grain with non–equilibrium boundaries of Al–0.5Mg alloy; (d) dislocation cell structures inside a larger grain with high density of dislocations of Al–0.5Mg alloy
Fig.2  HRTEM [1 1 ? 0] images taken from the HPT Al–0.5Mg alloy, showing a high density of 60° full dislocations on the (11 1 ? ) plane within about 300 nm grain: (a) HRTEM image of the grain with the FFT pattern inset transformed from the image in Fig.2a; (b) an inverse Fourier image transformed from the FFT pattern in Fig.2a using the (000) and pair of (11 1 ? ). The ellipses show examples of dislocation dipoles. The black circles mark interstitial loops and the white circles mark vacancy loops
Fig.3  Fig.3 HRTEM [1 1 ? 0] images in the HPT AA5182 alloy: (a) a small 20 nm subgrain with the FFT pattern inset transformed from the white frame in (a); (b) an inverse Fourier image transformed from the FFT pattern in (a) using the (000) and pair of (11 1 ? ), showing free of dislocations on the (11 1 ? ) plane
Fig.4  HRTEM [1 1 ? 0] images of an equilibrium LAGB in the HPT AA5182 alloy: (a) HRTEM image of grains C and D, showing the two grains share a common [1 1 ? 0] zone axis; (b) an inverse Fourier image transformed from the image in (a), showing 60° full dislocations on two (111) planes at the boundary. Dislocations on (111)C and (111)D planes in (b) are indicated with white and black ‘T’, respectively
Fig.5  HRTEM [1 1 ? 0] images of a non-equilibrium LAGB in the HPT AA5182 alloy, showing 60° full dislocations on the (11 1 ? ) plane at the boundary: (a) HRTEM image of the non-equilibrium LAGB; (b) an inverse Fourier image transformed from the image in (a). Dislocations are indicated with white “T”
Fig.6  HRTEM [1 1 ? 0] images of a non-equilibrium HAGB in the HPT Al–0.5Mg alloy: (a) HRTEM image of grains A and B, showing the two grains share a common [1 1 ? 0] zone axis; (b) the FFT pattern transformed from (a). Dislocations on {111}A and {111}B planes in (a) are indicated with white and black ‘T’, respectively
Fig.7  HRTEM [1 1 ? 0] image of a Σ9 high angle boundary in the HPT AA5182 alloy. The FFT pattern (inset), indicating the Σ9 GB formed between grains A and C
1 I. Sabirov, M. Y.Murashkin, R. Z.Valiev,Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Materials Science and Engineering A, 560(10), 1(2013)
2 R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov,Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 45(2), 103(2000)
3 M. P. Liu, H. J. Roven,High density hexagonal and rhombic shaped nanostructures in an fcc aluminum alloy induced by severe plastic deformation at room temperature, Applied Physics Letters, 90(8), 3115(2007)
4 H. J. Roven, M. P. Liu, J. C. Werenskiold,Dynamic precipitation during severe plastic deformation of Al-Mg-Si aluminium alloy, Materials Science and Engineering A, 483, 54(2008)
5 P. V. Liddicoat, X. Z. Liao, Y. H. Zhao, Y. T. Zhu, M. Y. Murashkin, E. J. Lavernia, R. Z. Valoev, S. P. Ringer,Nanostructural hierarchy increases the strength of aluminium alloys, Nature Communications, 1, 63(2010)
6 L. J. Hu, S. J. Zhao,The effect of nanostructural hierarchy on the mechanical properties of aluminium alloys during deformation processes, Journal of Materials Science, 47(19), 6872(2012)
7 X. Y. Liu, J. B. Adams,Grain-boundary segregation in Al–10% Mg alloys at hot working temperatures, Acta Materialia, 46(10), 3467(1998)
8 X. Y. Liu, P. P. Ohotnicky, J. B. Adams, C. L. Rohrer, R. W. Hyland Jr,Anisotropic surface segregation in Al–Mg alloys, Surface Science, 373(2), 357(1997)
9 J. W. Zhang, M. J. Starink, N. Gao, W. L. Zhou, Effect of Mg addition on strengthening of aluminium alloys subjected to different strain paths in high pressure torsion, Materials Science and Engineering A, 528(4-5), 2093(2011)
10 K. M. Youssef, R. O. Scattergood, K. L. Murty, C. C. Koch,Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility, Scripta Materialia, 54(2), 251(2006)
11 F. Hou, X. Z. Liao, Y. T. Zhu, S. Dallek, E. J. Lavernia,Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling, Acta Materialia, 51(10), 2777(2003)
12 LU Ke,LIU Xuedong, HU Zhuangqi, Hall-Petch relation in nanocrystalline materials, Chinese Journal of Materials Research, 8(5), 385(1994)
12 (卢 柯, 刘学东, 胡壮麒, 纳米晶体材料的Hall-Petch关系, 材料研究学报, 8(5), 385(1994))
13 WEI Yingjuan,YUAN Shouqian, ZHANG Bing, ZHANG Xifeng, Ultrafine grain Al and Al alloys processed by SPD, Light Alloy Fabrication Technology, 36(4), 49(2008)
13 (魏颖娟, 袁守谦, 张 兵, 张西锋, 大塑性变形制备超细晶粒铝及铝合金材料. 轻合金加工技术, 36(4), 49(2008))
14 G. Sakai, Z. Horita, T. G. Langdon,Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion, Materials Science and Engineering A, 393(1), 344(2005)
15 Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, R. Z. Valiev, T. G.Langdon,An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy, Journal of Materials Research, 11(8), 1880(1996)
16 A. P. Zhilyaev, T. G. Langdon,Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science, 53(6), 893(2008)
17 M. P. Liu, H. J. Roven, M. Y. Murashkin, R. Z. Valiev, A. Kilmametov, Z. Zhang, Y. D. Yu,Structure and mechanical properties of nanostructured Al–Mg alloys processed by severe plastic deformation, Journal of Materials Science, 48(13), 4681(2013)
18 J. Y. Huang, Y. T. Zhu, H. Jiang, T. C. Lowe,Microstructures and dislocation configurations in nanostructured Cu processed by RCS, Acta Materialia, 49(9), 1497(2001)
19 R. Kaibyshev, K. Shipilova, F. Musin, Y. Motohashi,Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion, Materials Science and Engineering A, 396(1-2), 341(2005)
20 R. S. Musalimov, R. Z. Valiev,Dilatometric analysis of aluminium alloy with submicrometre grained structure, Scripta Metallurgica et Materialia, 27(12), 1685(1992)
21 R. Z. Valiev, V. Y. Gertsman, O. A. Kaibyshev,Grain boundary structure and properties under external influences, Physica Status Solidi, 97(1), 11(1986)
22 J. Y. Huang, X. Z. Liao, Y. T. Zhu, F. Zhou, E. J. Lavernia,Grain boundary structure of nanocrystalline Cu processed by cryomilling, Philosophical Magazine, 83(12), 1407(2003)
23 E. Ma, T. D. Shen, X. L. Wu,Nanostructured metals: Less is more, Nature Materials, 5(7), 515(2006)
24 X. L.Wu, E. MaY. T. Zhu,Deformation defects in nanocrystalline nickel, Journal of Materials Science, 42(5), 1427(2007)
25 M. Murayama, J. M. Howe, H. Hidaka, S. Takaki,Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe, Science, 295(5564), 2433(2002)
26 X. Z. Liao, J. Y. Huang, Y. T. Zhu, F. Zhou, E. J. Lavernia,Nanostructures and deformation mechanisms in a cryogenically ball-milled Al-Mg alloy, Philosophical Magazine, 83(26), 3065(2003)
27 HU Gengxiang, CAI Xun, Fundamentals of Material Science(Shanghai, Shanghai Traffic Press, 2000)p.111
27 (胡赓祥, 蔡 珣, 材料科学基础, 第一版 (上海, 上海交通大学出版社, 2000)p.111)
28 R. Z. Valiev, V. Y. GertsmanO. A. Kaibyshev,Grain boundary structure and properties under external influences, Physica Status Solidi(a), 97(1), 11(1986)
29 Y. H. Zhao, J. F. Bingert, Y. T. Zhu, X. Z. Liao, R. Z. Valiev, Z. Horita, T. G. Langdon, Y. Z. Zhou, E. J. Lavernia,Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density, Applied Physics Letters, 92(8), 3(2008)
30 V. Randle,Twinning-related grain boundary engineering, Acta Materialia, 52(14), 4067(2004)
31 T. L. Daulton, T. J. Bernatowicz, R. S. Lewis, S. Messenger, F. J.Stadermann, S. Amari,Polytype distribution of circumstellar silicon carbide: Microstructural characterization by transmission electron microscopy, Geochimica et Cosmochimica Acta, 67(24), 4743(2003)
32 K. Ikeda, N. Takata, K. Yamada, F. Yoshida, H. Nakashima, N. Tsuji,Grain boundary structure in ARB processed copper, Materials Science Forum, 503, 925(2006)
33 R. Z. Valiev,Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Materials, 3(8), 511(2004)
34 M. Richert, H. P. Stuwe, M. J. Zehetbauer, J. Richert, R. Pippan, C.Motz, E. Schafler, Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression. Materials Science and Engineering A, 355(1-2), 180(2003)
35 R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe,Paradox of strength and ductility in metals processed bysevere plastic deformation, Journal of Materials Research, 17(1), 5(2002)
36 Y. T. Zhu, X. Z. Liao,Nanostructured metals: Retaining ductility, Nature Materials, 3(6), 351(2004)
37 R. Z. Valiev, N. A. Enikeev, T. G. Langdon,Towards superstrength of nanostructured metals and alloys, produced by SPD, Kovove Mater, 49, 1(2011)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[3] CHEN Ruizhi, LIU Lirong, GUO Shengdong, ZHANG Mai, LU Guangxian, LI Yuan, ZHAO Yunsong, ZHANG Jian. Microstructural Stability and Stress Rupture Property of a 6Re/3Ru Containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(10): 721-730.
[4] DENG Hailong, LIU Bing, GUO Yang, KANG Heming, LI Mingkai, LI Yongping. Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism[J]. 材料研究学报, 2023, 37(1): 55-64.
[5] WEI Lin, ZHOU Sigeng, Naicheng SHENG, YU Jinjiang, HOU Guichen, WANG Biao, QUAN Jia, ZHOU Yizhou, SUN Xiaofeng, KANG Yong. Effect ofγ'-phase on Tensile and Stress Rupture Deformation Behavior of High W-containing Ni-based Superalloys[J]. 材料研究学报, 2023, 37(1): 29-38.
[6] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[7] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[8] JIN Dan, HAN Gaofeng, LONG Haoyue, JIN Kai. Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel[J]. 材料研究学报, 2022, 36(11): 845-849.
[9] SUN He, CHEN Ming, CHENG Ming, WANG Ruixue, WANG Xu, HU Xiaodong, ZHAO Hongyang, JU Dongying. A Multi-scale Model for Elucidation of Recrystallization and Texture of Mg-Alloy Sheet by Warm-rolling Process[J]. 材料研究学报, 2021, 35(5): 339-348.
[10] GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. 材料研究学报, 2020, 34(4): 291-298.
[11] LIU Yingkai,WANG Baibing,LIU Rendong,GUO Jinyu,SHI Wen. Effect of Allotropic Transformation on Plasticity of Fe-15Mn-10Al-0.3C Dual Phase Steel during Annealing[J]. 材料研究学报, 2019, 33(11): 837-847.
[12] Zhiping HU, Yunbo XU, Hui LIU, Le WANG. Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite[J]. 材料研究学报, 2018, 32(3): 177-183.
[13] Zhiyuan LIU, Yongjun LIU, Peng LIU, Chuanyong CUI. Effects of Grain Size on Fatigue Properties of K492 Superalloy[J]. 材料研究学报, 2018, 32(11): 834-842.
[14] Mei XU, Zhenli MI, Hui LI, Di TANG, Haitao JIANG. Constitutive Model Based on Dislocation Density Theory for Hot Deformation Behavior of Ultra-high Strength Dual Phase Steel DP1000[J]. 材料研究学报, 2017, 31(8): 576-584.
[15] Xuemeng WANG,Siqian ZHANG,Ziyao YUAN,Lijia CHEN. Effect of Heat Treatment on Mechanical Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy[J]. 材料研究学报, 2017, 31(6): 409-414.
No Suggested Reading articles found!