Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (12): 919-924    DOI: 10.11901/1005.3093.2014.260
Current Issue | Archive | Adv Search |
Segregation of Solute Atoms in Hot Rolled Aluminum Alloy LT24
Hui LI1,3,**(),Bo WANG1,4,Wenqing LIU1,Shuang XIA2,Bangxin ZHOU2,Cheng SU3,Wenyan DING3,Yansong CHEN3
1. Key Laboratory for Microstructures, Shanghai University, Shanghai 200444
2. Institute of Materials, Shanghai University, Shanghai 200072
3. Zhejiang Jiuli Hi-Tech Metals Co., Ltd., Huzhou 313000
4. Guiyang Vocational and Technical College, Guiyang 550081
Cite this article: 

Hui LI,Bo WANG,Wenqing LIU,Shuang XIA,Bangxin ZHOU,Cheng SU,Wenyan DING,Yansong CHEN. Segregation of Solute Atoms in Hot Rolled Aluminum Alloy LT24. Chinese Journal of Materials Research, 2014, 28(12): 919-924.

Download:  HTML  PDF(3467KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The segregation of solute atoms in hot rolled LT24 aluminum alloy was investigated by atom probe tomography. The results show that a precipitate with composition of Al0.5Mg(Si0.7Cu0.3) can be observed in the grains. No solute segregation can be observed at the interface between precipitates and the matrix. However solute atoms, such as Mg, Si and Cu all tend to segregate at grain boundaries, but the segregation tendency of Cu is much stronger than that of Mg and Si. The concentration of Cu at grain boundaries is 45 times of that at the matrix. Based on the experimental results, the feature of solute segregation and its effect on the performance of the alloy are discussed.

Key words:  metallic materials      aluminum alloy      segregation      precipitates      grain boundary      atom probe tomography     
Received:  20 May 2014     
Fund: *Supported by National Natural Science Foundation of China No.51301103, China Postdoctoral Science Foundation No.2013M541507, Key Project of Shanghai Science and Technology Commission No.12JC1404000, and Innovation Fund of Shanghai University.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.260     OR     https://www.cjmr.org/EN/Y2014/V28/I12/919

Fig.1  Optical micrograph of the specimens (vertical direction is the hot rolling direction)
Fig.2  Three dimensional distribution of Mg, Si, Cu atoms in the interior of grain of the specimen
Fig.3  One dimensional concentration profile across the precipitate, the cross section of the data is 10 nm ×10 nm
Fig.4  Three dimensional distribution of Mg, Si and Cu atoms at the grain boundary of the specimen, the observation directions are parallel (a) and perpendicular (b) to the grain boundary
Fig.5  Concentration distribution at the grain boundary. One dimensional concentration profile of Mg, Si, Cu (a) and cumulative concentration profile of Mg, Si, Cu (b) across the grain boundary. The dash line in Fig.(a) indicates the position of grain boundary
Cu Si Mg
Sav 44.91 3.67 1.40
Γ 3.819 0.352 0.301
Table 1  Enrich factor (Sav) and Gibbs interface excess (Γ, ×1018/m2)
1 B. C. Shang, Z. M. Yin, G. Wang, B. Liu, Z. Q. Huang,Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy, Materials and Design, 32, 3818(2011)
2 C. D. Marioara, S. J. Andersen, J. Jansen, H. W. Zandbergen,The influence of temperature and storage time at RT on nucleation of the β"phase in 6082 Al-Mg-Si alloy, Acta Materialia, 51, 789(2003)
3 M. Jin, J. Li, G. J. Shao,The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy, Journal of Alloys and Compounds, 437, 146(2007)
4 WANG Hui,SUN Yuanzhen, ZHANG Weiguo, BI Antai, KANG Yalun, LI Wei, Atomic Energy Science and Technology, 33, 134(1999)
4 (王 辉, 孙源珍, 张伟国, 毕安泰, 康亚伦, 李 伟, 中国先进研究堆燃料元件包壳候选材料中温动水腐蚀, 原子能科学与技术, 33, 134(1999))
5 YANG Wenchao,WANG Mingpu, SHENG Xiaofei, ZHANG Qian, WANG Zhengan, Study of the aging precipitation and hardening behavior of 6005A alloy sheet for rail traffic vehicle, Acta Metellurgica Sinica, 46, 1481(2010)
5 (杨文超, 汪明朴, 盛晓菲, 张 茜, 王正安, 轨道交通车辆用6005A合金板材时效析出及硬化行为研究, 金属学报, 46, 1481(2010))
6 R. S. Yassar, D. P. Field, H. Weiland,The effect of predeformation on the β″ and β′ precipitates and the role of Q′ phase in an Al–Mg–Si alloy: AA6022, Scripta Materialia, 53, 299(2005)
7 G. A. Edwards, K. Stiller, G. L. Dunlop, M. J. Couper,The precipitation sequence in Al-Mg-Si alloys, Acta Metallurgica, 46, 3893(1998)
8 M. J. Starink, L. F. Cao, P. A. Rometsch. A model for the thermodynamics ofstrengthening due to co-clusters in Al–Mg–Si-based alloys, Acta Materialia, 60, 4194(2012)
9 M. Murayama, K. Hono, W. F. Miao, D. E. Laughlin,The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si, Metallurgical and Materials Transactions, 32A, 239(2001)
10 LIU Yani,CHEN Jianghua, YIN Meijie, LIU Chunhui, WU Cuilan, ZHAO Xinqi, The influences of natural ageing and Cu addition on the age hardening behavior of AlMgSi(Cu) alloys, Journal of Chinese Electron Microscopy Society, 29(3), 280(2010)
10 (刘亚妮, 陈江华, 尹美杰, 刘春辉, 伍翠兰, 赵新奇, 自然时效和Cu含量对AlMgSi(Cu)合金时效硬化行为的影响, 电子显微学报, 29(3), 280(2010))
11 L. B. Ber,Accelerated artificial ageing regimes of commercial aluminum alloys. II: Al-Cu, Al-Zn-Mg-(Cu), Al-Mg-Si-(Cu) alloys, Materials Science and Engineering, A280, 91(2000)
12 J. Kim, C. D. Marioara, R. Holmestad, E. Kobayshi, T. Sato,Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al-Mg-Si alloys, Materials Science and Engineering, A560, 154(2013)
13 K. El-Menshawy, A. A. El-sayed, M. E. El-bedawy, H. A. Ahmed, S. M. El-raghy,Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061, Corrosion Science, 54, 167(2012)
14 G. Svenningsen, M. H. Larsen, J. H. Nordlien, K. Nisancioglu,Effect of thermomechanical history on intergranular corrosion of extruded AlMgSi(Cu) model alloy, Corrosion Science, 48, 3969(2006)
15 G. Svenningsen, M. H. Larsen, J. C. Walmsley, J. H. Nordlien, K. Nisancioglu,Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content, Corrosion Science, 48, 1528(2006)
16 W. J. Liang, P. A. Rometsch, L. F. Cao, N. Birbilis,General aspects related to the corrosion of 6xxx series aluminum alloys: Exploring the influence of Mg/Si ratio and Cu, Corrosion Science, 76, 119(2013)
17 M. K. Miller, Atom Probe Tomography: Analysis at the Atomic Level, 1st ed.(Kluwer Academic/Pienum Publishers, New York, 1999)p. 33
18 LI Hui,XIA Shuang, ZHOU Bangxin, LIU Wenqing, Preliminary results of grain boundary segregation in Alloy 690 by atom probe tomography, Journal of Chinese Electron Microscopy Society, 30(3), 206(2011)
18 (李 慧, 夏 爽, 周邦新, 刘文庆, 原子探针层析方法研究690合金晶界偏聚的初步结果, 电子显微学报, 30(3), 206(2013))
19 H. S. Hasting, J. C. Walmsley, A. T. Van Helvoort, C. D. Marioara, S. J. Andersen, R. Holmestad,Z-contrast imaging of the arrangement of Cu in precipitates in 6XXX-series aluminum alloys, Philosophical Magazine Letters, 86, 589(2006)
20 D. J. Chakrabarti, D. E. Laughlin,Phase relations and precipitation in Al-Mg-Si alloys with Cu additions, Progress in Materials Science, 49, 389(2004)
21 WANG Bo,WANG Xiaojiao, SONG Hui, YAN Jujie, QIU Tao, LIU Wenqing, LI Hui, Strengthening effects of microstructure evolution during early ageing process in Al-Mg-Si alloy, Acta Metallurgica Sinica, 50, 685(2014)
21 (汪 波, 王晓姣, 宋 辉, 严菊杰, 邱 涛, 刘文庆, 李 慧, Al-Mg-Si合金时效早期显微组织演变及其对强化的影响, 金属学报, 50, 685(2014))
22 K. Matsuda, D. Teguri, Y. Uetani, T. Sato, S. Ikeno,Cu-segregation at the Q′/α-Al interface in Al-Mg-Si-Cu alloy, Scripta Materialia, 47, 833(2002)
23 H. Li, S. Xia, B. X. Zhou, W. Q. Liu,C–Cr segregation at grain boundary before the carbide nucleation in Alloy 690, Materials Characterization, 66, 68(2012)
24 H. Li, S. Xia, W. Q. Liu, T. G. Liu, B. X. Zhou,Atomic scale study of grain boundary segregation before carbide nucleation in Ni–Cr–Fe alloys, Journal of Nuclear Materials, 439, 57(2013)
25 D. Lemarchand, E. Cadel, S. Chambreland, D. Blavette,Investigation of grain-boundary structure–segregation relationship in an N18 nickel-based superalloy, Philosophical Magazine, 82A, 1651(2002)
26 D. Blavette, P. Duval, L. Letellier, M. Guttmann,Atomic-scale APFIM and TEM investigation of grain boundary microchemstry in Astroloy nickel base superalloys, Acta Materialia, 44, 4995(1996)
27 B. W. Krakauer, D. N. Seidman,Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces, Physics Review, 48B, 6724(1993)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!