Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (11): 873-880    DOI: 10.11901/1005.3093.2014.114
Current Issue | Archive | Adv Search |
Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg2Ni-type Alloys
Yanghuan ZHANG1,2,**(),Zeming YUAN2,Tingting ZHAI2,Tai YANG2,Guofang ZHANG1,Dongliang ZHAO2
1. Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010
2. Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081
Cite this article: 

Yanghuan ZHANG,Zeming YUAN,Tingting ZHAI,Tai YANG,Guofang ZHANG,Dongliang ZHAO. Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg2Ni-type Alloys. Chinese Journal of Materials Research, 2014, 28(11): 873-880.

Download:  HTML  PDF(4114KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series (Mg24Ni10Cu2)100-xNdx (x = 0, 5, 10, 15, 20) alloys with a microstructure of nanocrystalline and amorphous structure were prepared by melt spinning technology. The effect of spinning rate and Nd content on the microstructure and the hydrogen storage performance of the alloys was investigated. The results of XRD and TEM examination reveal that all the as-cast alloys exhibit a multiphase microstructure, i.e. Mg2Ni-type phase is the major component and there exist several secondary phases such as Mg6Ni, Nd5Mg41 and NdNi. Furthermore, the as-spun Nd-free alloy shows a microstructure of entire nanocrystallines, whereas the as-spun alloys with Nd addition exhibit a microstructure of nanocrystalline and amorphous structure, meaning that the addition of Nd facilitates the glass forming of the alloys. The measurement of the hydrogen storage kinetics indicates that the melt spinning and the Nd addition can significantly improve the hydrogen storage performance of the alloys either in gaseous atmosphere or by electrochemically charging, and with the increasing spin rate and the amount of Nd addition, the high rate discharge capability (HRD) of the alloys increases firstly and then declines, for which the enhanced hydrogen diffusion coefficient (D) and limiting current density (IL) and the increased charge transfer resistance (Rct) resulted from both the melt spinning and the Nd addition are possibly responsible.

Key words:  metallic materials      Mg2Ni-type alloy      melt spinning      Nd addition      hydrogen storage kinetics     
Received:  10 March 2014     
Fund: *Supported by National Natural Science Foundation of China Nos.51161015 & 51371094, and Natural Science Foundation of Inner Mongolia No.2011ZD10.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.114     OR     https://www.cjmr.org/EN/Y2014/V28/I11/873

Fig.1  XRD spectra of the as-cast and spun alloys, (a) Nd10 alloy, (b) as-spun (30 ms-1)
Fig.2  TEM images and ED patterns of the as-spun alloys, (a-d) Nd10 alloy spun at 10, 20, 30, 40 ms-1, respectively; (e-h) Nd0, Nd5, Nd15, Nd20 alloys spun at 30 ms-1, respectively
Fig.3  DSC curves of the as-spun (Mg24Ni10Cu2)100-xNdx (x = 0-20) alloys, (a) Nd10 alloy, (b) As-spun (30 ms-1)
Fig.4  Evolutions of the R5a and C100a values of the as-cast and spun (Mg24Ni10Cu2)100-xNdx (x = 0-20) alloys with the spinning rate and the Nd content, (a) Nd10 alloy, (b) as-spun (30 m·s-1)
Fig.5  Evolutions of the R10d and C10d values of the as-cast and spun (Mg24Ni10Cu2)100-xNdx (x = 0-20) alloys withthe spinning rate and the Nd content, (a) Nd10 alloy, (b) as-spun (30 ms-1)
Fig.6  Evolution of HRDs of the as-cast and spun (Mg24Ni10Cu2)100-xNdx (x = 0-20) alloys with current density, (a) Nd10 alloy, (b) as-spun (30 ms-1)
Fig.7  Electrochemical impedance spectra (EIS) of the as-cast and spun (Mg24Ni10Cu2)100-xNdx (x = 0-20) alloys at the 50% depth of discharge (DOD), (a) Nd10 alloy, (b) as-spun (30 ms-1)
Fig.8  Semilogarithmic curves of anodic current vs. time responses of the as-cast and spun (Mg24Ni10Cu2)100-xNdx (x = 0-20) alloys, (a) Nd10 alloy, (b) as-spun (30 ms-1)
Fig.9  Tafel polarization curves of the as-cast and spun (Mg24Ni10Cu2)100-xNdx (x = 0-20) alloys at the 50% DOD, (a) Nd10 alloy, (b) as-spun (30 ms-1)
1 Q. Dong, W. Q. Tian,D-L. Chen, C-C. Sun, The potential of transition metal–methylidynes ashigh-capacity hydrogen storage media, Int. J. hydrogen energy, 34(13), 5444(2009)
2 A. Ebrahimi-Porkani, S. F. Kashani-Bozorg,Nanocrystalline Mg2Ni-based powders produced by high-energy ball milling and subsequent annealing, J. Alloys Compd, 456(1–2), 211(2008)
3 T. Spassov, L. Lyubenova, U. K?ster, M. D. Baró,Mg–Ni–RE nanocrystalline alloys for hydrogen storage, Mater. Sci. Eng. A, 375, 794(2004)
4 J. H. Woo, K. S. Lee,Electrode characteristics of nanostructured Mg2Ni-Type alloys prepared by mechanical alloying, J. Electrochem. Soc, 146(3), 819(1999)
5 Y. H. Zhang, C. Zhao, T. Yang, H. W. Shang, C. Xu, D. L. Zhao,Comparative study of electrochemical performances of the as-melt Mg20Ni10-xMx (M=None, Cu, Co, Mn; x=0, 4) alloys applied to Ni/metal hydride (MH) battery, J. Alloys Compd, 555, 131(2013)
6 H. Gu, Y. F. Zhu, L. Q. Li,Hydrogen storage properties of Mg–Ni–Cu prepared by hydriding combustion synthesis and mechanical milling (HCS+MM), Int. J. hydrogen energy, 34(6), 2654(2009)
7 B. Sakintuna, F. Lamari-Darkrimb, M. Hirscher,Metal hydride materials for solid hydrogen storage: Areview, Int. J. hydrogen energy, 32(9), 1121(2007)
8 J-C. Crivello, T. Nobuki, T. Kuji,Improvement of Mg–Al alloys for hydrogen storage applications, Int. J. hydrogen energy, 34(4), 1937(2009)
9 M. Y. Song, S. N. Kwon, J. S. Bae,S.H .Hong,Hydrogenstorage properties of Mg–23.5Ni–(0 and 5)Cu prepared by melt spinning and crystallization heat treatment, Int. J. Hydrogen Energy, 33(6), 1711(2008)
10 L. Hima-Kumar, B. Viswanathan, S. Srinivasa-Murthy,Hydrogen absorption by Mg2Ni prepared by polyol reduction, J. Alloys Compd, 461(1-2), 72(2008)
11 G. Y. Liang, D. C. Wu, L. Li, L. J. Huang,A discussion on decay of discharge capacity for amorphous Mg–Ni–Nd hydrogen storage alloy, J. Power Sources, 186(2), 528(2009)
12 S. Todorova, T. Spassov,Mg6Ni formation in rapidly quenched amorphous Mg–Ni alloys, J. Alloys Compd, 469(1-2), 193(2009)
13 H. P. Ren, Y. H. Zhang, B. W. Li, D. L. Zhao, S. H. Guo, X. L. Wang,Influence of the substitution of La for Mg on the microstructure and hydrogen storage characteristics of Mg20-xLaxNi10 (x = 0-6) alloys, Int. J. hydrogen energy, 34(3), 1429(2009)
14 G. K. Williamson, W. H. Hall,X-ray line broadening from filed aluminium and wolfram,?Acta Metall, 1(1), 22(1953)
15 Y. Wu, W. Han, S. X. Zhou, M. V. Lototsky, J. K. Solberg, V. A. Yartys,Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg-10Ni-2Mm alloys, J. Alloys Compd, 466(1-2), 176(2008)
16 S. Orimo, H. Fujii,Materials science of Mg-Ni-based new hydrides, Appl. Phys. A, 72(2), 167(2001)
17 T. Spassov, U. K?ster,Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy, J. Alloys Compd, 279(2), 279(1998)
18 L. Zaluski, A. Zaluska, J. O. Str?m-Olsen,Nanocrystalline metal hydrides, J. Alloys Compd, 253, 70(1997)
19 A. Gasiorowski, W. Iwasieczko, D. Skoryna, H. Drulis, M. Jurczyk,Hydriding properties of nanocrystalline Mg2-xMxNi alloys synthesized by mechanical alloying (M = Mn, Al), J. Alloys Compd, 364(1-2), 283(2004)
20 N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, T. Iwasaki,Electrochemical impedance and deterioration behavior of metal hydride electrodes, J. Alloys Compd, 202(1-2), 183(1993)
21 J. Kleperis, G. Wójcik, A. Czerwinski, J. Skowronski, M. Kopczyk, M. Beltowska-Brzezinska,Electrochemical behavior of metal hydrides, J. Solid State Electrochem, 5(4), 229(2001)
22 G. Zheng, B. N. Popov, R. E. White,Electrochemical Determination of the Diffusion Coefficient of Hydrogen Through an LaNi4.25Al0.75 Electrode in Alkaline Aqueous Solution, J. Electrochem. Soc, 142(8), 2695(1995)
23 B. V. Ratnakumar, C. Witham, R. C. Bowman-Jr, A. Hightower, B. Fultz,Electrochemical Studies on LaNi5-xSnx?Metal Hydride Alloys, J. Electrochem Soc., 143(8), 2578(1996)
24 X. Y. Zhao, Y. Ding, L. Q. Ma, L. Y. Wang, M. Yang, X. D. Shen,Electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2?hydrogen storage alloy modified with nanocrystalline nickel, Int. J. Hydrogen Energy, 33(22), 6727(2008)
25 X. Y. Zhao, Y. Ding, M. Yang, L. Q. Ma,Effect of surface treatment on electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy, Int. J. Hydrogen Energy, 33(1), 81(2008)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!