Please wait a minute...
Chin J Mater Res  2012, Vol. 26 Issue (2): 191-198    DOI:
论文 Current Issue | Archive | Adv Search |
Preparation and Properties of Hybrid Functionalized Carbon Nanotube Polyurethane Composites
ZHU Mengqi1,  XIAO Tan2, ZHENG Weiling1,  WEI Baojuan1,  WANG Yu2,  WU Ping1
1. Science College, Shantou University, Shantou 515063
2. School of Engineering, Sun Yat–sen University, Guangzhou 510006
Cite this article: 

ZHU Mengqi XIAO Tan ZHENG Weiling WEI Baojuan WANG Yu WU Ping. Preparation and Properties of Hybrid Functionalized Carbon Nanotube Polyurethane Composites. Chin J Mater Res, 2012, 26(2): 191-198.

Download:  PDF(1300KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Multi–walled carbon nanotubes (MWNTs) were modified with different approaches to produce carboxylated carbon nanotubes (MWNTs–COOH), covalently functionalized carbon nanotubes (MWNTs–NH2), noncovalently functionalized carbon nanotubes (MWNTs–PPA), and hybrid functionalized carbon nanotubes (MWNTs–COOH–PPA), respectively. These functionalized MWNTs were respectively incorporated into polyurethane (PU) with various mass fraction to prepare four kinds of PU composite. The mechanical and thermal properties of these composites were tested by means of universal testing machine and thermal gravimetric analyzer. The results show that by grafting few functional groups onto the MWNT surface to prevent the detachment of noncovalent wrapping, hybrid functionalization not only improves the dispersion of MWNTs in the matrix, but also retains the interfacial interactions between them. Therefore the best reinforcement is achieved. Addition of heat–resistant MWNTs increases the thermal deposition temperature of PU matrix, and the increase amount slightly varies with functionalization
approaches. MWNTs–COOH–PPA/PU has the best mechanical performance. Its tensile strength increased 104% compared with pure PU at 0.3% MWNTs loading. Its thermal decomposition temperature is identical to that of MWNTs–COOH/PU, better than that of pure PU, but lower than that of MWNTs–NH2/PU and MWNTs–PPA/PU.
Key words:  composites      carbon nanotubes      hybrid functionalization      polyurethane      mechanical properties      thermal properties     
Received:  30 August 2011     
ZTFLH: 

TB332

 
Fund: 

Supported by National Natural Science Foundation of China No. 10772102, Natural Science Foundation of Guangdong Province Nos. 07008103 and 9152841101000001, Reserve Key Project of Yat–sen University No.1132249, Talent Project of Sun Yat–sen University No. 3181304.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I2/191

1 M.S.Dresselhaus, G.Dresselhaus, J.C.Charlier, E.Hern´andez, Electronic, thermal and mechanical properties of carbon nanotubes, Phil. Trans. R. Soc. Lond. A, 362, 2065(2004)

2 T.W.Odom, J.L.Huang, P.Kim, C.M.Liebel, Atomic structure and electronic properties of single–walled carbon nanotubes, Nature, 391, 62(1998)

3 A.V.Desai, M.A.Haque, Mechanics of the interface for carbon nanotube–polymer composites, Thin–walled Structures, 43, 1787(2005)

4 B.Safadi, R.Andrews, E.A.Grulke, Multiwalled carbon nanotube polymer compositesSynthesis and characterization of thin films, J. Appl. Polym. Sci., 84, 2660(2002)

5 C.Velasco–Santos, A.L.Martinez–Hernandez, F.T.Fisher, R.Ruoff, V.M.Castano, Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization, Chem. Mater., 15, 4470(2003)

6 M.J.O’Connell, P.Boul, L.M.Ericson, C.Huffman, Y.H.Wang, E.Haroz, C.Kuper, J.Tour, K.D.Ausman, R.E.Smalley, Reversible water–solublization of single–walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett., 342, 265(2001)

7 Y.Chen, R.C.Haddon, S.Fang, A.M.Rao, P.C.Eklund, W.H.Lee, E.C.Dickey, E.A.Grulke, R.E.Smalley, Chemical attachment of organic functional groups to single–walled carbon nanotubes material, J. Mater. Res., 13, 2423(1998)

8 A.Eitan, K.Y.Jiang, D.Dukes, R.Andrews, L.S.Schadler, Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites, Chem. Mater., 15, 3198(2003)

9 J.K.Lim, W.S.Yun, M.H.Yoon, S.K.Lee, C.H.Kim, K.Kim, S.K.Kim, Selective thiolation of single–walled carbon nanotubes, Synth. Met., 139, 521 (2003)

10 LI Bo, LIAN Yongfu, SHI Zujin, GU Zhennan, Chemical modification of single–wall carbon nanotube, Chemical Journal of Chinese Universities, 21, 1633(2000)

(李 博, 廉永福, 施祖进, 顾振南, 单层碳纳米管的化学修饰, 高等学校化学学报, 21, 1633(2000))

11 Y.Liu, A.Star, K.Grant, L.Ridvan, J.F.Stoddart, D.W.Steuerman, M.R.Diehl, A. Boukai, J.R. Heath, Noncovalent side–wall functionalization of single–walled carbon nanotubes, Macromolecules, 36, 553(2003)

12 A.Carrillo, J.A.Swartz, J.M.Gamba, R.S.Kane, Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles, Nano Lett., 3, 1437(2003)

13 J.Chen, M.A.Hamon, H.Hu, Y.S.Chen, A.M.Rao, P.C.Eklund, R.C.Haddon, Solution properties of single–walled carbon nanotubes, Science, 282, 95(1998)

14 M.A.Hamon, J.Chen, H.Hu, Adv. Mater., 11, 835(1999)

15 S.A.Curran, P.M.Ajayan, W.J.Blau, Composite from PmPV and carbon nanotubes: A novel material for molecular optoelectronics, Adv. Mater., 10, 1091(1998)

16 J.Q.Liu, T.Xiao, K.Liao, P.Wu, Interfacial design of carbon nanotube polymer composites: Hybrid system of noncovalent and covalent functionalizations, Nanotechnology, 18, 165701(2007)

17 XIONG Huifang, LIU Juqing, XIAO Tian, in Proceedings of the 15th National Conference on Composite Materials, Computer simulation of hybrid functionalized carbon nanotube polymer composites, edited by S.Y.Du (Beijing, National Defense Press, 2008) p.53

(熊慧芳, 刘举庆, 肖 潭, 第十五届全国复合材料学术会议论文集,  混杂功能化碳纳米管聚合物复合材料计算机模拟, edited by 杜善义 (北京, 国防工业出版社, 2008) p.53)

18 ZHENG Weiling, XIAO Tian, ZHU Mengqi, WU Ping, Preparation and dispersivity of multiwalled carbon nanotubes coated by Poly(phenylacetylene), Acta Phys. Chim. Sin., 25, 2373(2009)

(郑伟玲, 肖 潭, 朱朦琪, 吴 萍, 聚苯乙炔包覆多壁碳纳米管的制备及其分散性, 物理化学学报, 25, 2373(2009))

19 N.G.Sahoo, Y.C.Jung, H.J.Yoo, J.W.Cho, Influence of carbon nanotubes and polypyriole on the thermal, mechanical and electroactive shape–memory properties of polyurethane nanocomposites, Composites Science and Technology, 67, 1920(2007)

20 W.Chen, X.M.Tao, Y.Y.Liu, Carbon nanotube–reinforced polyurethane composite fibers, Composites Science and Technology, 66, 3029(2006)

21 YU Guanghui, ZHENG Fandi, Study on electrical and mechanical properties of polyurethane/CNTs composite, Engineering Plastics Application, 33, 11(2005)

(喻光辉, 曾繁涤, 聚氨酯/碳纳米管复合材料力学及电性能研究, 工程塑料应用, 33, 11(2005))

22 YANG Yu, ZHAO Xing, ZHANG Qinghua, Preparation and properties of TDI modified carbon nanotubes/polyurethane composites, New Chemical Materials, 37, 53(2009)

(杨  昱, 赵  昕, 张清华, 表面接枝TDI碳纳米管/聚氨酯复合材料的研制, 化工新型材料, 37, 53(2009))

23 J.W.Xiong, Z.Zheng, X.M.Qin, M.Li, H.Q.Li, X.L.Wang, The thermal and mechanical properties of a polyurethane/multi–walled carbon nanotube composite, Carbon, 44, 2701(2006)

24 WU Suxia, LV Zhiping, WAN Zhaorong, DOU Tao, The preparation and characterization of PU/CNTs composites, Polyurethane Industry, 22, 9(2007)

(吴素霞, 吕志平, 万兆荣, 窦 涛, 聚氨酯/碳纳米管复合材料的制备与表征, 聚氨酯工业, 22, 9(2007))

25 CAO Chunhua, LI Jialin, JIA Zhijie, CHEN Zhenghua, Decoration of carbon nanotubes with amine groups by reacting with diamine, New Carbon Materials, 19, 137(2004)

(曹春华, 李家麟, 贾志杰, 陈正华, 用二胺在碳纳米管上引入胺基团的研究, 新型炭材料, 19, 137(2004))

26 XU Guocai, ZHANG Lide, Nanocomposites (Beijing, Chemical Industrial Press, 2001) p.249

(徐国财, 张立德,  纳米复合材料, (北京, 化学工业出版社, 2001) p.249)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[4] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[9] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[10] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[14] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!