Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (6): 591-596    DOI:
论文 Current Issue | Archive | Adv Search |
Study on Constitutive Models of 22Cr–5Ni–3Mo–N High Alloy Steel for High Temperature Deformation
ZOU Dening1,  CHEN Zhiyu1, HAN Ying2,  FAN Guangwei3,  ZHANG Wei3 
1.School of Metallurgy and Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055
2.State Key Laboratory for Mechanical Behavior of Materials; Xi an Jiaotong University, Xi’an 710049
3.Technology Center of Taiyuan Iron and Steel Group Co.Ltd, Taiyuan 030003
Cite this article: 

ZOU Dening CHEN Zhiyu HAN Ying FAN Guangwei ZHANG Wei. Study on Constitutive Models of 22Cr–5Ni–3Mo–N High Alloy Steel for High Temperature Deformation. Chin J Mater Res, 2011, 25(6): 591-596.

Download:  PDF(928KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  High temperature compression tests were performed on 22Cr–5Ni–3Mo–N high alloy steel cast slab in the temperature range of 900–1200 ! and the strain rate range of 0.1–50 s−1 by Gleeble–3800 thermomechanical simulator machine. The regulations of true stress–true strain cures were analyzed at different working conditions. Based on the experimental data, the hyperbolic sine, the exponential and the power constitutive models were established describing the high temperature flow peak stress of the steel. The peak stresses were predicted by the constitutive equations under the corresponding experimental conditions. The accuracy and reliability of the equations were evaluated. The results show that when the peak stress is predicted by the hyperbolic sine model, the consistency between the experimental and
calculation values is the best. The correlation coefficient (R) is 0.998, and the average value of relatively errors is 4.9%. These will provide a basis of theory for selecting plastic deformation constitutive model of the steel at high temperature.
Key words:  metallic materials      22Cr–5Ni–3Mo–N high alloy steel      flow stress curves      constitutive equation      peak stress     
Received:  13 August 2010     
ZTFLH: 

TG133

 
Fund: 

Supported by Scientific Research Program Funded by Shaanxi Provincial Education Department No.2010JC10, State Key Laboratory for Mechanical Behavior of Materials No.20111212 and Produce–Learn–Research Cooperation Funded by Yulin City in Shaanxi Province No.K04102.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I6/591

1 Zh.L.Jiang, X.Y.Chen, H.Huang, X.Y.Liu, Grain refinement of Cr25Ni5Mo1.5 duplex stainless steel by heat treatment, Materials Science and Engineering, A363, 263(2003)

2 ZHANG Yan, QIAN Bainian, WANG Zongjie, LI Jingli, GUO Xuming, SUN Wenzhe, Effect of HAZ microstructure on toughness of 00Cr25Ni7Mo3N duplex stainless steel, Chinese Journal of Materials Research, 15(2), 219(2001)

(张艳, 钱百年, 王宗杰, 李晶丽, 国旭明, 孙文哲, 00Cr25Ni7Mo3N双相不锈钢HAZ组织对韧性的影响, 材料研究学报,  15(2), 219(2001))

3 MAO Pingli, U Guoyue, YANG Ke, Effect of the heat treatment on performance of duplex stainless steel 0Cr17Mn14Mo2N, Chinese Journal of Materials Research, 16(1), 88(2002)

(毛萍莉, 苏国跃, 杨柯, 热处理对0Cr7Mn14Mo2N双相不锈钢性能的影响, 材料研究学报,  16(1), 88(2002))

4 H.Farnoush, A.Momeni, K.Dehghani, J.Aghazadeh Mohandesi, H.Keshmiri, Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases, Materials and Design, 31, 220(2010)

5 WANG Yuexiang, LIUZhenyu, WANG Guodong, JIANG Laizhu, Influence of deformation rate on strain–induced phase transition of 2205 dduplex stainless steel, Journal of Northeastern University(Natural Science), 30(12), 1731(2009)

(王月香, 刘振宇, 王国栋, 江来珠, 变形速率对2205双相不锈钢形变诱导相变的影响, 东北大学学报(自然科学版),  30(12), 1731(2009))

6 Y.L.Fang, Z.Y.Liu, H.M.Song, L.Z.Jang, Hot deformation behavior of a anew austenite–ferrite duplex stainless steel containing high content of nitrogen, Materials Science and Engineering, A526, 128(2009)

7 ZOU Dening, HAN Ying, ZHANG Wei, JIA Yiyuan, Influence of high temperature aging on microstructure and properties of 2507 super–duplex stainless steel, Transactions of Materials and Heat Treatment, 31(6), 73(2010)

(邹德宁, 韩  英, 张  威, 贾诣远, 高温时效对2507超级双相不锈钢组织和性能的影响, 材料热处理学报,  31(6), 73(2010))

8 D.N.Zou, Y.Han, Z.Wei, G.W.Fan, Phase transformation and its effects on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel, Journal of Iron and Steel Research International, 17(11), 67(2010)

9 ZHANG Weihong, ZHANG Shihong, Correction of hot compression test data and constitutive equation of NiTi alloy, Acta Metallurgica Sinica, 42(10), 1039(2006)

(张伟红, 张士宏, NiTi合金热压缩实验数据的修正及其本构方程, 金属学报,  42(10), 1039(2006))

10 Zener C, Hollomon J H, Effeet of strain rate upon the plastic flow of steel, Journal Applied Physics, 15(1), 22(1944) 

11 Y.Han, D.N.Zou, Z.Y.Chen, G.W.Fan, W.Zhang, Investigation on hot deformation behavior of 00Cr23Ni4N duplex stainless steel under medium–high strain rates, Materials Characterization, 62(2), 198(2011)

12 Y.Sun, W.D.Zeng, Y.Q.Zhao, Y.L.Qi, X.Ma, Y.F.Han, Development of constitutive relationship model of Ti600 alloy using artificial neural network, Computational Materials Science, 48, 686(2010)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!