Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (2): 191-195    DOI:
论文 Current Issue | Archive | Adv Search |
Swelling Behavior of Porous Ti–35%Al Alloy Prepared by Reactive Synthesis
JIANG Yao; HE Yuehui
State key laboratory for powder metallurgy; Central south university; Changsha 410083
Cite this article: 

JIANG Yao HE Yuehui. Swelling Behavior of Porous Ti–35%Al Alloy Prepared by Reactive Synthesis. Chin J Mater Res, 2010, 24(2): 191-195.

Download:  PDF(757KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Swelling behavior is an important feature of Ti–Al alloy porous material prepared by reactive synthesis of element powder as raw material, and closely related with its pore structure properties. The influences of reactive synthesis process and restrained sintering on swelling behavior of Ti–Al alloy porous material were investigated thoroughly and detailedly under the given condition of other preparing parameters. The results show Kirkendall pores formed due to the discrepancies of Ti/Al solubility and diffusion rates lead to the wide–range expansion of compact volume. In the first stage of Al diffusion, Ti–Al compact appears volume expansion behavior of more than 60% and near 40% of open porosity; in the second stage of Al diffusion, Ti–Al compact occurs volume expansion of 1%–3% with open porosity of 47%. In earlier stage sintering procedure, swelling behavior of Ti–Al alloy porous material through restrained sintering shows strict linear law; in final sintering procedure, it shows a little shrinkage behavior of volume.

Key words:  metallic materials       Ti–Al intermetallic compound       porous material       reactive synthesis       swelling behavior     
Received:  22 October 2009     
Fund: 

Surpported by National Natural Foundation of China Nos.50825102, 20636020, and Central South Univerisity
Science Development Foundation.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I2/191

1 H.Kamide, H.Kashima, Hot corrosion behaviour of TiAl with salt in artificial sea–water, Corrosion Engineering, 46(2), 83–89(1997)
2 Z.Tang, F.Wang, W.Wu, Hot–corrosion behavior of TiAl–base intermetallics in molten salts, Oxidation of Metals, 51(3), 235–250(1999)
3 W.J.Wang, J.P.Lin, Y.L.Wang, Y.Zhang, G.L.Chen, Isothermal corrosion TiAl–Nb alloy in liquid zinc, Materials Science and Engineering A, 452–453(15), 194–201(2007)
4 D.Hu, X.Wu, M.H.Loretto, Advances in optimisation of mechanical properties in cast TiAl alloys, Intermetallics, 13(9), 914–919(2005)
5 Y.W.Kim, Advances in the fundamental understanding for designing engineering gamma TiAl alloys, Transactions of the Chinese Institute of Engineers, Series A, 22(1), 13–25(1999)
6 Z.Zhong, D.Zou, S.Li, Advance in Ti3Al and TiAl intermetallic materials, Acta Metallurgica Sinica, Series A, 8(4–6), 531–541(1995)
7 LIU Yong, HUANG Baiyun, HE Yuehui, YANG Bing, Manufacturing TiAl based alloy through elemental powder metallurgy process, Materials Science and Engineering of Powder Metallurgy, 4(03), 189–194(1999)
(刘 咏, 黄伯云, 贺跃辉, 杨 兵, 元素粉末冶金方法制备TiAl基合金, 粉末冶金材料科学与工程,  4(03), 189--194(1999))
8 Yuehui He, Yao Jiang, Nanping Xu, Jin Zou, Baiyun Huang, Chain T.Liu, Peter K.Liaw. Fabrication of Ti–Al Micro/Nanometer–Sized Porous Alloys through the Kirkendall Effect. Advanced Materials, 19, 2102–2106(2007)
9 Y.Jiang, Y.H.He, N.P.Xu, J.Zou, B.Y.Huang, C.T.Liu, Effects of the Al content on pore structures of porous Ti–Al alloys, Intermetallics, 16, 327–332(2008)
10 J.B.Yang, W.S.Hwang, Preparation of TiAl–based intermetallics from elemental powders through a two–step pressureless sintering process, Journal of Materials Engineering and Performance, 7(3), 385–392(1998)
11 T.K.Lee, J.H.Kim, S.K.Hwang, Direct consolidation of gamma–TiAl–Mn–Mo from elemental powder mixtures and control of porosity through a basic study of powder reactions, Metallurgical and Materials Transactions A, 28A(12), 2723–2729(1997)
12 J.B.Yang, K.W.Teoh, W.S.Hwang, Solid–state hot pressing of elemental aluminum and titanium powders to form TiAl (γ + α2) intermetallic microstructure, Journal of Materials Engineering and Performance, 5(5), 583–588(1996)
13 T.K.Lee, E.I.Mosunov, S.K.Hwang, Consolidation of a gamma TiAl–Mn–Mo alloy by elemental powder metallurgy, Materials Science & Engineering A, 239–240, 540–545(1997)
14 G.X.Wang, M.Dahms, TiAl–based alloys prepared by elemental powder metallurgy, Powder Metallurgy International, 24(4), 219–225(1992)
15 C.McCullough, J.J.Valencia, C.G.Levi, R.Mehrabian, Phase equilibria and solidification in Ti–Al alloys, Acta Metallurgica, 37(5), 1321–1336(1989)
16 F.J.J.van Loo, G.D.Rieck, Diffusion in the Titanium–Aluminium system em dash 1,2, Acta Metallurgica, 21(1), 61–84(1973)

[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!