Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (5): 483-489    DOI:
论文 Current Issue | Archive | Adv Search |
Solution and aging treatment of Cu–Fe alloys imposed by a high magnetic field
ZUO Xiaowei; WANG Engang; QU Lei; ZHANG Lin; LI Guimao; HE Jicheng
Key Laboratory of Electromagnetic Processing of Materials; Ministry of Education; Northeastern University; Shenyang 110004
Cite this article: 

ZUO Xiaowei WANG Engang QU Lei ZHANG Lin LI Guimao HE Jicheng. Solution and aging treatment of Cu–Fe alloys imposed by a high magnetic field. Chin J Mater Res, 2009, 23(5): 483-489.

Download:  PDF(1021KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The investigations on the solution and aging treatment of Cu–15%Fe (mass fraction) alloy imposed by a high magnetic field show that, high magnetic field can promote spheroidization of the Fe dendrites in Cu matrix, and the spheroidization and coarsening caused by slow cooling at high temperature determine the morphology of Fe dendrites. High magnetic field can promote the precipitation of Fe in Cu matrix, which is similar to the effect of slow cooling. Further, the solubility of Fe in Cu matrix is minimum as the aging temperature is 500   under 10 T high magnetic field, which is because of the combined action of temperature profile and magnetic transformation of precipitations when imposed by high magnetic field. The theoretical analysis shows that the activation energy of atoms is changed by
imposition of high magnetic field, and therefore affects the diffusion behavior of atoms.

Key words:  metallic materials      high magnetic field      Cu–Fe alloy      solution treatment      aging      diffusion     
Received:  18 February 2009     
ZTFLH: 

TG156

 
Fund: 

Supported by National High Technology Research and Development Program of China No.2007AA03Z519, National Natural Science Foundation of China No.50574027, the Research Fund for the Doctoral Program of Higher Education of China Nos.20050145031, 20070145062, and the 111 Project of China No. B07015.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I5/483

1 YAO Zaiqi, GE Jiping, LIU Shuhua, LI Haishan, LI Mingsheng, Conductivity of Cu–11.5%Fe alloys, The Chinese J. Nonferr. Metals, 14(11), 1912(2004)
(姚再起, 葛继平, 刘书华, 李海山, 李明生, Cu--11.5%Fe合金的导电性, 中国有色金属学报,  14(11), 1912(2004))
2 T.Kakeshita, K.Shimizu, S.Funada, M.Date, Magnetic field–induced martensitic transformations in disordered and ordered Fe–Pt alloys, Trans. Jpn. Inst. Metals, 25(12), 837(1984)
3 T.Kakeshita, K.Shimizu, S.Funada, M.Date, Composition dependence of magnetic field–induced martensitic transformations in Fe–Ni alloys, Acta Metall., 33(8), 1381(1985)
4 H.Guo, M.Enomoto, Influence of magnetic fields on α/γ equilibrium in Fe–C(–X) alloys, Mater. Trans., 41(8), 911(2000)
5 HE Changshu, ZHANG Yudong, ZHAO Xiang, ZUO Liang, HE Jicheng, Watanabe K, Zhang T, Nishijima G, Esling C, Effects of a high magnetic field on microstructure and texture evolution in a cold–rolled interstitial–free (IF) steel sheet during annealing, Adv. Eng. Mater., 5(8), 579(2003)
6 W.V.Youdelis, D.R.Colton, J.Cahoon, On the theory of diffusion in a magnetic field, Can. J. Phys., 42(11), 2217(1964)
7 H.Nakajima, S.Maekawa, Y.Aoki, M.Koiwa, Diffusion of nickel in titanium in a magnetic field, Trans. Jpn. Inst. Metals, 26(1), 1(1985)
8 CUI Liying, LI Xiaona, QI Min, Ageing behavior of super–saturated Al–4%Cu alloys under high magnetic field, The Chinese J. Nonferr. Metals, 17(12), 1967(2007)
(崔立英, 李晓娜, 齐 民, Al--4%Cu过饱和合金在强磁场中时效行为, 中国有色金属学报,  17(12), 1967(2007))
9 Z.F.Li, J.Dong, X.Q.Zeng, C.Lu, W.J.Ding, Z.M.Ren, Influence of strong static magnetic field on intermediate phase growth in Mg–Al diffusion couple, J. Alloy. Compd., 440(1–2), 132(2007)
10 WANG Engang, ZHANG Lin, ZUO Xiaowei, HE Jicheng, Morphology of the Cu–rich phase in Cu–Pb hypermonotectic alloys under an intense magnetic field, Steel Res. Int., 78(5), 386(2007)
11 ZUO Xiaowei, WANG Engang, HAN Huan, ZHANG Lin, HE Jicheng, Microstructure and magnetic property of Fe–49%Sn monotectic alloys solidified under a high magnetic field, Acta Metall. Sin., 44(10), 1219(2008)
(左小伟, 王恩刚, 韩 欢, 张 林, 赫冀成, 强磁场下Fe--49%Sn偏晶合金凝固组织及磁性能, 金属学报,  44(10), 1219(2008))
12 ZHANG Lin, WANG Engang, ZUO Xiaowei, HE Jicheng, Solidification structure of Cu–40%Pb monotectic alloy in high magnetic field, J. Northeastern Univ. (Natural Sci.), 29(4), 541(2008)
(张 林, 王恩刚, 左小伟, 赫冀成, 强磁场对Cu--40%Pb偏晶合金凝固组织的影响, 东北大学学报(自然科学版),  29(4), 541(2008))
13 R.W.Cahn, P.Haasen, Physical Metallurgy, 4th edition, (Amsterdam and New York, North–Holland, 1996) p.557
14 H.Morikawa, K.Sassa, S.Asai, Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field, Mater. Trans., 39(8), 814(1998)

[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!