Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (5): 478-482    DOI:
论文 Current Issue | Archive | Adv Search |
Analysis on tensile deformation and fracture behaviors of grain oriented electrical steels at low temperature
AN Zhiguo; MAO Weimin
Cite this article: 

AN Zhiguo; MAO Weimin. Analysis on tensile deformation and fracture behaviors of grain oriented electrical steels at low temperature. Chin J Mater Res, 2009, 23(5): 478-482.

Download:  PDF(1051KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tensile properties of grain-oriented electrical steels up to 300 were investigated and the corresponding fractography characteristics were observed. It was found that the segregation of phosphor atoms on grain boundaries was decreased with increasing tensile temperature, which resulted in enhancing cleavage fractography with reducing intergranular fracture. The intergranular fracture disappeared at the temperature over 100, while the yield strength of the matrix became obviously lower than its cleavage strength, which led to reducing cleavage fractography with enhancing dimples fracture that prevailed at 190. The Cottrell atmosphere would be trailed by the moving dislocations during the tensile deformation between 100–160, which induced decreasing elongation and limited yield strength drop with increasing deformation temperature.

Key words:  metallic materials      grain-oriented electrical steels      tension deformation      fracture surfaces      segregation     
Received:  01 April 2009     
ZTFLH: 

TG111

 
  TG113

 
About author:  Supported by National Natural Science Foundation of China No.50871015.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I5/478

1 YANG Huaguo, Selection of cold rolling mill for high grade silicon steel, Shanghai Metals, 29(5), 105(2007)
(杨华国, 高牌号硅钢冷轧机选型的研究, 上海金属,  29(5), 105(2007))
2 A.C.Yen, W.R.Graham, G.R.Belton, The segregation of phosphorus to the free surface of a ferritic iron alloy at 723 to 823 K, Metallurgical Transactions A, 9A(1), 31(1978)
3 S.Suzuki, Segregation of tin and silicon on the (011) surface in Fe–3 mass%Si, Materials Transactions, JIM, 35(1), 35(1994)
4 P.Lejcek, R.Seidl, V.Paidar, Orientation dependent surface segregation in dilute Fe–Si alloy single crystals, Scripta Metallurgica, 21(3), 273(1987)
5 Y.Yoshitomi, S.Suzuki, T.Ueda, H.Nakashima, H.Yoshinaga, Grain boundary segregation in <110> symmetrical tilt bicrystals of an Fe–3%Si alloy, Scripta Metallurgica et Materialia, 32(7), 1067(1995)
6 W.P.Sun, M.Militzer, J.J.Jonas, Strain–induced nucleation of MnS in electrical steels, Metallurgical Transactions A, 23A, 821(1992)
7 ZHONG Qunpeng, ZHAO Zihua, Fracture Science (Beijing, Higher Education Press, 2006) p.161
(钟群鹏, 赵子华,  断口学  (北京, 高等教育出版社, 2006) p.161)
8 R.G.Thompson, C.L.White, J.J.Wert, D.S.Easton, On the mechanism of intergranular embrittlement by phosphorus in transformer steel, Metallurgical Transactions A, 12A(7), 1339(1981)
9 GUO Qiaoneng, Advances in theoretical study of relationship between grain–boundary segregation and embrittlement fracture, Materials Review, 16(3), 15(2002)
(郭巧能, 晶界偏聚与材料脆断间关系的理论研究进展, 材料导报,  16(3), 15(2002))
10 WANG Zhenpo, TIAN Wei, CUI Hongyu, LIU Tao, The effect of light impurities segregated on the grain boundary to the Fe brittleductile character, Acta Scientiarum Naturalium Universitatis Nankaiensis, 39(4), 14(2006)
(王振坡, 田 维, 崔红宇, 刘 涛, 偏聚于晶界的轻杂质对Fe韧脆特性的影响, 南开大学学报,  39(4), 14(2006))
11 D.Mclean, Grain Boundaries in Metals (London, Oxford University Press, 1957) p.116
12 J.Perh´a?cov´a, A.V´yrostkov´a, P. ? Sevc, Phosphorus segregation in CrMoV low–alloy steels, Surface Science, 454–456, 642(2000)
13 M.P.Seah, Adsorption–induced interface decohesion, Acta Metallurgica, 28(7), 955(1980)
14 S.H.Song, H.Zhuang, J.Wu, Dependence of ductile–to–brittle transition temperature on phosphorus grain boundary segregation for a 2.25Cr1Mo steel, Materials Science and Engineering A, 486, 433(2008)
15 YU Yongning, Materials Science Foundation (Beijing, Higher Education Press, 2006) p.506
(余永宁,  材料科学基础  (北京, 高等教育出版社, 2006) p.506)
16 L.F.Mondolfo, Aluminum Alloys: Structure and Properties (London, Butter Worth, 1976) p.38
17 D.F.Stein, J.P.Low, Mobility of edge dislocations in silicon–crystals, Journal of Applied Physics, 31(2), 362(1960)

[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!