Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (4): 375-379    DOI:
论文 Current Issue | Archive | Adv Search |
Tensile strain hardening behavior of TRIP/TWIP steel with 18.8% manganese
DING Hao1;   DING Hua1;2;   TANG Zhengyou1;    SONG Dan1;   YANG Ping3
1.School of Materials and Metallurgy; Northeastern University; Shenyang 110004
2.The State Key Lab of Rolling and Automation of Northeastern University; Shenyang 110004
3.School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

DING Hao DING Hua TANG Zhengyou SONG Dan YANG Ping. Tensile strain hardening behavior of TRIP/TWIP steel with 18.8% manganese. Chin J Mater Res, 2009, 23(4): 375-379.

Download:  PDF(1031KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The tensile tests were carried out to study the strain hardening behavior of a high manganese TRIP/TWIP steels with 18.8% manganese. The results indicated that, strain hardening behaviors are different during the deformation process. True stress-strain curve obeys Hollomon relationship partly. TRIP effect occurs in the initial plastic stage, and the strain hardening exponent in this stage is a constant. However, the value of n increases with true strain ε increasing, when true strain is between 0.14 and 0.35. Then the value of d2σ/dε2 is above zero. A lot of deformation twinning can be found, and the micro mechanisms are twins induced plasticity. TWIP effect dominates this stage. The mechanism of the last stage is some TRIP effect, and both phases have occurred plastic deformation.

Key words:  metallic materials      high manganese steel      TRIP/TWIP effect      strain hardening      mechanical properties     
Received:  23 December 2008     
ZTFLH: 

TG142

 
Fund: 

Supported by National Nature Science Foundation of China No.50771019.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I4/375

1 DING Hua, TANG Zhengyou, LIWei, WANG Mei, SONG Dan, Microstructures and mechanical properties of Fe-Mn-(Al, Si) TRIP/TWIP steels, Journal of Iron and Steel Research, 13(6), 66(2006)
2 A.S.Hamada, L.P.Karjalainen, M.C.Somani, The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels, Materials Science and Engineering A, 467, 114(2007)
3 V.Tsakiris, D.V.Edmonds, Martensite and deformation twinning in austenitic steels, Materials Science and Engineering A, 273-275, 430(1999)
4 S.Allain, J.P.Chateau, O.Bouaziz, A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel, Materials Science and Engineering A, 387-389, 143(2004)
5 B.X.Huang, X.D.Wang, Y.H.Rong, L.Wang, L.Jin, Mechanical behavior and martensitic transformation of an Fe–Mn–Si–Al–Nb alloy, Materials Science and Engineering A, 438-440, 306(2006)
6 O.Grassel, L.Kruger, G.Frommeyer, L.W.Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels developmentproperties-application, International Journal of Plasticity, 16, 1391(2000)
7 ZHANG Zengzhi, Austenitic Manganese Steel (Beijing, The Press of Metallurgical Industry, 2002) p.54
(张增志, 耐磨高锰钢  (北京, 冶金工业出版社, 2002) p.54)
8 ZHANG Yizeng, LOU Yanliang, LI Guoan, ZOU Hongcheng, Staged strain hardening curve of dualphase
Mo-containing steel, Iron and Steel, 20(9), 32(1985)
(张以增, 娄彦良, 李国安, 邹鸿承, 含Mo双相钢应变硬化曲线的阶段性, 钢铁,  20(9), 32(1985))
9 XIONG Ronggang, FU Renyu, LI Qian, ZHANG Mei, LI Lin, Tensile strain hardening behaviour of TWIP steels, Iron and Steel, 42(11), 61(2007)
(熊荣刚, 符仁钰, 黎倩, 张梅, 李麟, TWIP钢的拉伸应变硬化行为, 钢铁, 42(11), 61(2007))
10 G.Frommeyer, U.Brux, P.Neumann, Supra-ductile and high-strength manganese- TRIP/TWIP steels for high energy absorption purposes, ISIJ International, 43(3), 438(2003)
11 C.C.Hyoung, K.H.Tae, C.S.Hong, W.C.Yong, The formation kinetics of deformation twin and deformation induced ε-martensite in an austenitic Fe-C-Mn steel, Scripta Materialia, 40(10), 1171(1999)
12 I.Karaman, H.Sehitoglu, K.Gall, Y.I.Chumlyakov, Deformation of single crystal Hadfield steel by twinning and slip, Acta mater, 48(6), 1345(2000)
13 Kazunori Sato, Michiyuki Ichinose, Yoshihiko Hirotsu, Yasunobu Inoue, Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys, ISIJ International, 29(10), 868(1989)
14 LI Shutang, Metal X-ray diffraction and electronic micro analyze technology (Beijing, The Press of Metallurgical Industry, 1980) p.168
(李树棠,  金属X射线衍射与电子显微分析技术 (北京, 冶金工业出版社, 1980) p.168)
15 D.C.Ludwigson, Modified stress-strain relation for fcc metals and alloys, Metallurgical Transactions, 2, 2825(1971)
16 O.Bouaziz, S.Allain, C.Scott, Effect of grain and twin boundaries on the hardening mechanisms of twinninginduced plasticity steels, Scripta Materialia, 58(6), 484(2008)
17 H.Fujita, T.Katayama, In-situ observation of straininduced  γ → ε → α' and γ → α' martensitic transformations
in Fe-Cr-Ni alloys, Materials Transactions, JIM, 33(3), 243(1992)

[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!