Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (3): 225-230    DOI:
论文 Current Issue | Archive | Adv Search |
Investigation of friction and wear behavior of NiAl--based alloys at room temperature
WANG Zhensheng1;2;  GUO Jianting1;  ZHOU Lanzhang1;  XIE Yi1;  SHENG Liyuan1;  HU Zhuangqi1
1.Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015 2.School of Electromechincal Engineering;Hunan University of Science and Technology;  Xiangtan 411201
Cite this article: 

WANG Zhensheng GUO Jianting ZHOU Lanzhang XIE Yi SHENG Liyuan HU Zhuangq. Investigation of friction and wear behavior of NiAl--based alloys at room temperature. Chin J Mater Res, 2009, 23(3): 225-230.

Download:  PDF(1010KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The friction and wear properties of NiAl, NiAl--Cr(Mo)--Hf eutectic alloy and NiAl--Al2O3--TiC composite were investigated with an MRH-5A friction and wear tester. The results showed that the wear resistance of NiAl-based alloys was directional propertional to their hardness and fracture toughness and the friction coefficient  ecreased with the increasing hardness. Among the above three alloys, NiAl--Al2O3--TiC composite possessed the best friction and wear properties. The wear mass loss only one-fourth to three-fourthes of that of NiAl--Cr(Mo)--Hf eutectic alloy or one-twentieth to one-tenth of that of NiAl alloy, which was attributed to the efficient transferring stress and supporting effect of reinforcing ceramic particles. The wear process of three NiAl materials is dominated by plastic deformation, and the main wear mechanism of the three NiAl--based alloys was abrasive wear. With the increase of load, the wear surfaces exhibit orderly such wear mechanisms as distinct plastic deformation, spalling and adhesion wear. The wear mechanism played an important role in the wear rate and friction coefficent.

Key words:  metallic materials      NiAl      NiAl--Al2O3--TiC composite      NiAl--Cr(Mo)--Hf eutectic alloy      friction and wear behavior      wear mechanism     
Received:  27 September 2008     
ZTFLH: 

TH117

 
  TG146

 

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I3/225

1 B.J.Johnson, F.E.Kennedy, I.Baker, Dry sliding wear of  NiAl, Wear, 192, 241(1996)
2 J.A.Hawk, D.E.Alman, Abrasive wear of intermetallicbased alloys and composites, Materials Science and Engineering, 239-240(A), 899(1997)
3 J.A.Hawk, D.E.Alman, Abrasive wear behavior of NiAl and NiAl-TiB2 composites, Wear, 225-229, 544(1999)
4 GUOJianting,Ordered Intermetallic Compound NiAl Alloy (Beijing, Science Press, 2003) p.75
(郭建亭,  有序金属间化合物镍铝合金  (北京, 科学出版社, 2003) p.75)
5 D.T.Jiang, J.T.Guo, D.L.Lin, C.X.Shi, Reaction synthesis, microstructure, and mechanical properties of in situ composite NiAl-Al2O3-TiC, Metallurgical and Materials Transactions, 31, 1692(2000)
6 Hawk.J.A, Alman.D.E, Stoloff.N.S, Abrasive wear behavior of MoSi2-Nb composites, Script Metall Mater, 31(4), 473(1994)
7 LI Dan, ZHANG Yongsheng, ZHOU Huidi, CHEN Jianmin, Friction and wear behavior of Ni-based alloy reinforced with MoSi2, Tribology, 27(4), 336(2007)
(李丹, 张永胜, 周惠娣, 陈建敏, MoSi2增强镍基合金复合材料的摩擦磨损性能研究, 摩擦学学报,  27(4), 336(2007))
8 F.P.Bowden, D.Tabor, CHEN Shaoli, YUAN Hanchang, DING Xuejia, The Friction and Lubrication of Solids (Beijing, China Machine Press, 1982) p.91
(F.P.鲍登, D.泰伯, 陈绍澧, 袁汉昌, 丁雪加,  固体的摩擦与润滑 (北京, 机械工业出版社, 1982) p.91)
9 J.H.Jin, D.J.Stephenson, The sliding wear behaviour of reactively hot pressed nickel aluminides, Wear, 217, 200(1998)
10 WEN Shizhu, Principles of Tribology (first edition) (Beijing, Tsinghua University Press, 1990) p.372
(温诗铸,  摩擦学原理 (第一版) (北京, 清华大学出版社, 1990) p.372)
11 WANG Xiufei, HUANG Qizhong, NING Keyan, YIN Cailiu, GAO Ying, Effects of brake conditions on tribological properties of Fe-based powder metallurgy material, Tribology, 27(4), 372(2007)
(王秀飞, 黄启忠, 宁克焱, 尹彩流, 高莹, 刹车条件对铁基粉末冶金材料摩擦磨损性能的影响, 摩擦学学报, 27(4), 372(2007))

[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!