Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (2): 133-137    DOI:
论文 Current Issue | Archive | Adv Search |
Preparation of solid state Fe–Ti alloy compound by FFC in molten salts at 700oC
LIAO Xianjie1;  ZHAI Yuchun1;  XIE Hongwei1;  ZHANG Yi
1.School of Material and Metallurgy; Northeastern University; Shenyang 110014
2.Institute of the Process Engineering Research; Chinese Academy of Sciences; Beijing 100080
Cite this article: 

LIAO Xianjie ZHAI Yuchun XIE Hongwei ZHANG Yi. Preparation of solid state Fe–Ti alloy compound by FFC in molten salts at 700oC. Chin J Mater Res, 2009, 23(2): 133-137.

Download:  PDF(1035KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Ti–Fe alloy compound was prepared by FFC in the molten salts at 700oC . The preformed cathode feed was fabricated with the slurry of mixing TiO2 and Fe power. The graphite rod was used as the anode in the corundum crucible. At cell voltage of 3.4 V, electro–deoxidation was carried out. With different stoichiometric ratios of Fe and TiO2 powder, different currency–time plots were gotten, which showed that the more Fe addition, the quicker the reaction speed is during the first 7 hours deoxidation.

Key words:  synthesizing and processing technics      electrochemical      TiFe      Fe2Ti      molten salts      electro–deoxidation     
Received:  01 September 2008     
ZTFLH: 

TB321

 
  TF111

 
Fund: 

Supported by National Nature Science Foundtion of China No.50674026.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I2/133

1 A.Kinaci, M.K.Aydinol, Ab initio investigation of Feti–H system, International journal of hydrogen energy, 32(13), 2466(2007) 2 B.K.Singh, H.Ryu, Development of new hydrogen storage material Feti(Ni) for improved hydrogenation characteristics, IEEJ transactions on electrical and electronic engineering, 1(1), 24(2006) 3 L.I.B.X.Zhan G M, Pan F, Magnetic properties and microst ructure of Fe/ Ti nano2scale multilayers, 182(1–2), 89(1998) 4 Yan X L, Chen X Q, Grytsiva A, Witusiewicz V T, Rogl P, Podloucky R, Pomjakushin V, Giester G., Site  reference, thermodynamic, and magnetic properties of the ternary laves phase Ti(Fe1–Xalx)(2) with the crystal structure of the Mgzn2–Type. International journal of materials research, 97(4), 450(2006) 5 J.Koeble, M.Huth, Field induced unidirectional magnetic anisotropy in Fe2Ti thin films, European magnetic materials and applications, 373(3), 137(2001) 6 FAN Xu, ZHEN Xiamao, Massive metastable Fe2Ti alloy preparation and magnetic property, 6(5), 606(2007) (范旭, 真下茂, 亚稳态Fe2Ti块状合金的制备和磁性,  6(5), 606(2007)) 7 ZHANG Yingmin, ZHOU Lian, SUN Jun, HAN Mingchen, SHU Ying, YANG Jianming, Cooling bed titanium alloy smelting technology, Titanium Industry, 24(4), 27(2007) (张英明, 周廉, 孙军, 韩明臣, 舒滢, 杨建朝, 钛合金冷床熔炼技术进展, 钛工业进展,  24(4), 27(2007)) 8 G.Z.Chen, D.J.Fray, T.W.Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(6802), 361(2000) 9 C.Schwandt, D.J.Fray, Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride, Electrochimica Acta, 51(1), 66(2005) 10 Du J.H., Xi Z.P., Li Q.Y., Li, Z X; Tang, Y., Process of reduction of TiO2 using electrodeoxidation, Rare metal materials and engineering, 35(7), 1045(2006) 11 X.W.Wang, D.P.Ray, T.T.Alton, Electrical conductivity of cryolitic melts (Warrendale, Minerals, Metals &  aterials Soc, 1991) p.481 12 X.W.Wang, D.P.Ray, T.T.Alton, A multiple regression equation for the electrical conductivity of cryolitic melts, (Warrendale, Minerals, Metals & Materials Soc, 1992) p.247 13 HU Xianwei, WANG Zhaowen, LU Guimin, SHI Zhongning, CHAO Xiaozhou, CUI Jianzhong, ZHAO Xingliang, Equivalent circuit analysis and application for electrical conductivity measurement by continuously varying cell constant technique, The Chinese Journal of Nonferrous Metals, 18(3), 551(2008) (胡宪伟, 王兆文, 路贵民, 石忠宁, 曹晓舟, 崔建忠, 赵兴亮, 连续变化电导池常数法测定电导率的等效电路分析及应用, 中国有色金属学报(2008)) 14 WANG Changzhen, Metallurgical physical chemistry research methods, (Beijing, Metallurgical Industry Press, 2002) p.344 (王常珍,  冶金物理化学研究方法  (北京, 冶金工业出版社, 2002) p.344) 15 T.B.massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, OH, (1990) 16 LIANG Yingjiao, CHE Yingchang, Inorganic thermodynamics manual data, (China Liaoning Shenyang, Northeastern University Press, 1993) p.634 (梁英教, 车荫昌,  无机物热力学数据手册 (沈阳, 东北大学出版社, 1993) p.634)
[1] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[2] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[3] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[4] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[5] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[6] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[7] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[8] WANG Gen, LI Xinmei, LU Caibin, WANG Songchen, CHAI Cheng. Preparation and Properties of CoCuFeNiTi High Entropy Alloy Coating[J]. 材料研究学报, 2021, 35(8): 561-571.
[9] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[10] ZHANG Shaohua, LI Yanrui, WEI Yinghui, LIU Baosheng, HOU Lifeng, DU Huayun, LIU Xiaoda. Synergistic Effect of Multi-media on Carbon Steel Corrosion[J]. 材料研究学报, 2021, 35(10): 721-731.
[11] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[12] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[13] CAI Guodong, CHENG Xiyun, WANG Dian. Preparation of 316L Stainless Steel Products by Fused Deposition Model 3D-printing and Effect of La on Morphology and Distribution of Precipitates[J]. 材料研究学报, 2020, 34(8): 635-640.
[14] ZUO Cheng, DU Yunhui, ZHANG Peng, WANG Yujie, Cao Haitao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. 材料研究学报, 2020, 34(8): 621-627.
[15] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
No Suggested Reading articles found!