Please wait a minute...
Chin J Mater Res  2004, Vol. 18 Issue (1): 25-25    DOI:
Research Articles Current Issue | Archive | Adv Search |
Mechano-chemical molecular chains model of fatigue damage for fibre-reinforced polymeric matrix composites
;;
西安交通大学
Cite this article: 

. Mechano-chemical molecular chains model of fatigue damage for fibre-reinforced polymeric matrix composites. Chin J Mater Res, 2004, 18(1): 25-25.

Download:  PDF(2169KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Under the cyclic loading, the important damage characteristic of fibre-reinforced polymeric matrix composites is the damage behaviour depending on both the material microstructure and the chemical effect. Focus on this characteristic, mechano-chemical molecular chains mode for studying fatigue damage was established. The fractions of broken molecular chains in matrix and on interface were introduced respectively to describe the matrix-dominated damage or interface-dominated damage mechamism. The mechano-chemical effect was included in molecular scale and the influence of microstructure on fatigue process was considered. The relations between residual strength and mechanical properties, microstructure parameters, physical chemistry parameters were analyzed as well. Load-constant fatigue tests for composite material(SMC) were carried out, and the experimental results appears good agreement with predicted values based on the proposed model.
Key words:  composite      fatigue damage      mechano-chemical effect      molecular chain model      
Received:  20 January 2003     
ZTFLH:  TB332  
  TB114  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2004/V18/I1/25

1 LI Zhijun(李志军), CHENG Guangxu(程光旭), DUAN Quan(段权), Journal of Xi'an Jiaotong University(西安交通大学学报), 36(1) , 90(2000)
2 A.Plumtree, Guangxu Cheng, Plastics, Rubber and Composites, 27(8) , 349(1998)
3 E.Altus, Foundation of a Mechano-Chemical Fatigue Theory, Institute for Aerospace Studies, UTIAS Report, University of Toronto, Canada, 1989
4 QU Jinping(瞿金平), HU Hanjie(胡汉杰), Polymer Processing Principle and Technology (聚合物成型原理及成型技术) (Beijing, Chemical Industry Press, 2001, First edition) p.82
5 ZAO Zhongwei(赵中伟), ZAO Tiancon(赵天从), LI Honggui(李洪桂), Non-Ferrous Metal of Hunan Province(湖南有色金属), 11(2) , 44(1995)
6 ZHANG Shiqi(张士齐), Synthetic Rubber Industry(合成橡胶工业), 18(5) , 257(1995)
7 ZHU Ming(朱敏), Chemistry and Physics of Rubber(橡胶化学与物理) (Bejing, Chemical Industry Press, 1984) p.3
8 I.R.Gelling, Rubber Chem. and Tech., 58(1) , 86(1985)
9 S.Roy, Elastomers and Plastics, 20(4) , 280(1990)
10 A.E.Somers, T.J.Bastow, M.I.Burgar, Polymer Deg. and Stab., 70(1) , 31(2000)
11 J.N.Yang, D.L.Jones, Journal of Composite Materials, 24(6) , 753(1987)
12 XU Fenghe(许凤和), Mechanical Test of Polymer Materials (高分子材料力学试验)(Beijing, Academic Press, 1988) p.5
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!