Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (12): 901-908    DOI: 10.11901/1005.3093.2025.103
ARTICLES Current Issue | Archive | Adv Search |
Influence of Hf Doping on Spinodal Decomposition of TiSc Alloy
WANG Yukun1,2, DUAN Huichao1,2(), DU Kui1,2
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

WANG Yukun, DUAN Huichao, DU Kui. Influence of Hf Doping on Spinodal Decomposition of TiSc Alloy. Chinese Journal of Materials Research, 2025, 39(12): 901-908.

Download:  HTML  PDF(18771KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Spinodal decomposition enables the formation of continuous nanoscale dual-phase structures with periodic compositional fluctuations, a unique microstructure that significantly enhances mechanical properties such as strength, hardness, and creep resistance of alloys. Consequently, tailoring spinodal decomposition to optimize mechanical performance has emerged as a central objective in materials research. While compositional control is vital to this process, and elemental doping provides a precise strategy to regulate the decomposition behavior, the mechanism related with interactions between dopants and spinodal dynamics remains elusive. In this study, the evolution of nanoscale lamellar microstructures in Hf-doped TiSc alloys (0-10% Hf, in atomic fraction) was systematically investigated by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD), as well as Vickers hardness measurements. The results demonstrate that with the increase of Hf content from 0 to 10%, the lamellar structure width formed by spinodal decomposition in TiSc alloys exhibits a progressive growth trend. Meanwhile, the spinodal decomposition structures of α-Ti and α-Sc undergo morphological transitions from lamellar to interconnected network and blocky morphologies, respectively. The former phenomenon may be attributed to that both the chemical driving force for spinodal decomposition and the lattice mismatch between Ti and Sc atoms may be reduced by the addition of Hf, which may thermodynamically facilitate the occurrence of larger-scale compositional fluctuations within the system, as a consequence, the lamellar width of spinodal decomposition structures is then increased. The latter transformation may be raised from the homogeneous solid solution of low-diffusivity Hf atoms in the TiSc matrix, which significantly decreases the overall diffusion rate of the system, thereby promoting structural evolution in both α-Ti and α-Sc spinodal decomposition phases. Furthermore, the Vickers hardness continuously decreases from 375.37HV to 281.11HV with the widening of lamellar structures, indicating that Hf addition alters the microstructural characteristics and consequently affects the mechanical properties of TiSc alloys.

Key words:  metallic materials      spinodal decomposition      electron microscopy      TiSc alloy      element doped     
Received:  11 March 2025     
ZTFLH:  TG146.2  
Fund: National Science and Technology Major Project of China(2019VI00060120);National Key Research and Development Program of China(2024YFA1208002);Natural Science Foundation of Liaoning Province(2023-BS-010)
Corresponding Authors:  DUAN Huichao, Tel: (024)83978628, E-mail: hcduan15s@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2025.103     OR     https://www.cjmr.org/EN/Y2025/V39/I12/901

Fig.1  SEM-BSE images of TiSc alloys with different Hf element contents (a) TiSc, (b) TS-2H, (c) TS-5H, (d) TS-10H
Fig.2  TEM-BF images of TiSc alloys with different Hf element contents (a) TiSc, (b) TS-2H, (c) TS-5H, (d) TS-10H
Fig.3  Statistics of Ti lamellae width of TiSc alloys with different Hf element contents
Fig.4  EDS analysis of TiSc alloys with different Hf element contents (a) TS-2H, (b) TS-5H, (c) TS-10H
Fig.5  Proportion of Hf element in different alloys (a) and Ti/Sc ratio of α-Ti and α-Sc in different alloys (b)
Fig.6  XRD patterns of TiSc alloys with different Hf element contents
Fig.7  Vickers hardness of TiSc alloys with different Hf element contents
Fig.8  Variation of Vickers hardness and average lamella width with the content of Hf element
[1] Yu Y N. Fundamentals of Materials Science [M]. 2nd ed. Beijing: Higher Education Press, 2012
余永宁. 材料科学基础 [M]. 2版. 北京: 高等教育出版社, 2012
[2] Cai X. Fundamentals of Materials Science and Engineering [M]. Shanghai: Shanghai Jiao Tong University Press, 2010
蔡 珣. 材料科学与工程基础 [M]. 上海: 上海交通大学出版社, 2010
[3] Rios O, Ebrahimi F. Spinodal decomposition of the γ-phase upon quenching in the Ti-Al-Nb ternary alloy system [J]. Intermetallics, 2011, 19(1): 93
doi: 10.1016/j.intermet.2010.09.014
[4] Ishiguro Y, Tsukada Y, Koyama T. Phase-field study of the spinodal decomposition rate of β phase in oxygen-added Ti-Nb alloys [J]. Comput. Mater. Sci., 2020, 174: 109471
doi: 10.1016/j.commatsci.2019.109471
[5] Tang Y P, Goto W, Hirosawa S, et al. Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition [J]. Acta Mater., 2017, 131: 57
doi: 10.1016/j.actamat.2017.04.002
[6] Moore K T, Johnson W C, Howe J M, et al. On the interaction between Ag-depleted zones surrounding γ plates and spinodal decomposition in an Al-22at.%Ag alloy [J]. Acta Mater., 2002, 50(5): 943
doi: 10.1016/S1359-6454(01)00394-9
[7] Avila-Davila E O, Melo-Maximo D V, Lopez-Hirata V M, et al. Microstructural simulation in spinodally-decomposed Cu-70at.%Ni and Cu-46at.%Ni-4at.%Fe alloys [J]. Mater. Charact., 2009, 60(6): 560
doi: 10.1016/j.matchar.2009.01.003
[8] Xiao X P, Yi Z Y, Chen T T, et al. Suppressing spinodal decomposition by adding Co into Cu-Ni-Si alloy [J]. J. Alloy. Compd., 2016, 660: 178
doi: 10.1016/j.jallcom.2015.11.103
[9] Kondo S I, Nakashima H, Morimura T. Spinodal decomposition in a melt-spun Cu-15Ni-8Sn alloy [J]. Physica, 2019, 560B: 244
[10] Choo W K, Kim J H, Yoon J C. Microstructural change in austenitic Fe-30.0wt%Mn-7.8wt%Al-1.3wt%C initiated by spinodal decomposition and its influence on mechanical properties [J]. Acta Mater., 1997, 45(12): 4877
doi: 10.1016/S1359-6454(97)00201-2
[11] Baker I, Wu H, Wu X, et al. The microstructure of near-equiatomic B2/f.c.c. FeNiMnAl alloys [J]. Mater. Charact., 2011, 62(10): 952
doi: 10.1016/j.matchar.2011.07.009
[12] Zhukov A A. On the history of detection of spinodal predecomposition of supercooled austenite in bainitic iron-carbon alloys [J]. Met. Sci. Heat Treat., 2001, 43(1-2): 55
doi: 10.1023/A:1010474307139
[13] Alleg S, Bouzabata B, Greneche J M. Kinetics study of the spinodal decomposition in the Fe-30.8Cr-12.2Co alloy by Mössbauer spectrometry [J]. J. Alloy. Compd., 1999, 282(1-2): 206
doi: 10.1016/S0925-8388(98)00649-5
[14] Ujihara T, Osamura K. Kinetic analysis of spinodal decomposition process in Fe-Cr alloys by small angle neutron scattering [J]. Acta Mater., 2000, 48(7): 1629
doi: 10.1016/S1359-6454(99)00441-3
[15] Xiao W L, Dargusch M S, Kent D, et al. Activation of homogeneous precursors for formation of uniform and refined α precipitates in a high-strength β-Ti alloy [J]. Materialia, 2020, 9: 100557
doi: 10.1016/j.mtla.2019.100557
[16] Chen W, Yu G X, Li K E, et al. Plastic instability in Ti-6Cr-5Mo-5V-4Al metastable β-Ti alloy containing the β-spinodal decomposition structures [J]. Mater. Sci. Eng., 2021, 811A: 141052
[17] Barriobero-Vila P, Requena G, Schwarz S, et al. Influence of phase transformation kinetics on the formation of α in a β-quenched Ti-5Al-5Mo-5V-3Cr-1Zr alloy [J]. Acta Mater., 2015, 95: 90
doi: 10.1016/j.actamat.2015.05.008
[18] Ng H P, Devaraj A, Nag S, et al. Phase separation and formation of omega phase in the beta matrix of a Ti-V-Cu alloy [J]. Acta Mater., 2011, 59(8): 2981
doi: 10.1016/j.actamat.2011.01.038
[19] Yang J K, Zhang C L, Zhang H, et al. Spinodal decomposition-mediated multi-architectured α precipitates making a metastable β-Ti alloy ultra-strong and ductile [J]. J. Mater. Sci. Technol., 2024, 191: 106
doi: 10.1016/j.jmst.2023.11.071
[20] An Z B, Mao S C, Yang T, et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy [J]. Mater. Horizons, 2021, 8: 948
[21] Hua Z L, Zhang D C, Guo L, et al. Medium-entropy Zr-Nb-Ti alloys with low magnetic susceptibility, high yield strength, and low elastic modulus through spinodal decomposition for bone-implant applications [J]. Acta Biomater., 2024, 190: 623
doi: 10.1016/j.actbio.2024.11.001 pmid: 39522629
[22] Cahn J W. Phase separation by spinodal decomposition in isotropic systems [J]. J. Chem. Phys., 1965, 42(1): 93
doi: 10.1063/1.1695731
[23] Cahn J W. On spinodal decomposition [J]. Acta Mater., 1961, 9(9): 795
doi: 10.1016/0001-6160(61)90182-1
[24] Cahn J W. Hardening by spinodal decomposition [J]. Acta Metall., 1963, 11(12): 1275
doi: 10.1016/0001-6160(63)90022-1
[25] Mott N F, Nabarro F R N. An attempt to estimate the degree of precipitation hardening, with a simple model [J]. Proc. Phys. Soc., 1940, 52(1): 86
doi: 10.1088/0959-5309/52/1/312
[26] Khachatryan A G. Theory of Structural Transformations in Solids [M]. New York: Dover Publications, 2008
[27] Hillert M H. A theory of nucleation for solid metallic solutions [D]. Cambridge: Massachusetts Institute of Technology, 1956
[28] Park H, Haftlang F, Heo Y U, et al. Periodic spinodal decomposition in double-strengthened medium-entropy alloy [J]. Nat. Commun., 2024, 15: 5757
doi: 10.1038/s41467-024-50078-6 pmid: 38982065
[29] Röyset J, Ryum N. Scandium in aluminium alloys [J]. Int. Mater. Rev., 2005, 50(1): 19
doi: 10.1179/174328005X14311
[30] Guo C J, Shi Y F, Chen J S, et al. Effects of P addition on spinodal decomposition and discontinuous precipitation in Cu-15Ni-8Sn alloy [J]. Mater. Charact., 2021, 171: 110760
doi: 10.1016/j.matchar.2020.110760
[31] Panagiotopoulos N T, Jorge A M, Rebai I, et al. Nanoporous titanium obtained from a spinodally decomposed Ti alloy [J]. Micropor. Mesopor. Mater., 2016, 222: 23
doi: 10.1016/j.micromeso.2015.09.054
[32] Jeong Y H, Lee K, Choe H C, et al. Nanotube formation and morphology change of Ti alloys containing Hf for dental materials use [J]. Thin Solid Films, 2009, 517(17): 5365
doi: 10.1016/j.tsf.2009.03.167
[33] Kikuchi M, Takahashi M, Sato H, et al. Grindability of cast Ti-Hf alloys [J]. J. Biomed. Mater. Res., 2006, 77B(1) : 34
[34] Sato H, Kikuchi M, Komatsu M, et al. Mechanical properties of cast Ti-Hf alloys [J]. J. Biomed. Mater. Res., 2005, 72B: 362
doi: 10.1002/jbm.b.v72b:2
[35] Zhou Y L, Niinomi M, Akahori T. Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf [J]. Mater. Sci. Eng., 2008, 483-484A: 153
[36] Imgram A G, Williams D N, Ogden H R. Tensile properties of binary titanium-zirconium and titanium-hafnium alloys [J]. J. Less Common Met., 1962, 4(3): 217
doi: 10.1016/0022-5088(62)90068-1
[37] Porter D A, Easterling K E, Sherif M Y. Phase Transformations in Metals and Alloys [M]. 4th ed. Boca Raton: CRC Press, 2021
[38] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. interfacial free energy [J]. J. Chem. Phys., 1958, 28(2): 258
doi: 10.1063/1.1744102
[39] Zhang L, Xiang Z L, Li X D, et al. Spinodal decomposition in Fe-25Cr-12Co alloys under the influence of high magnetic field and the effect of grain boundary [J]. Nanomaterials, 2018, 8(8): 578
doi: 10.3390/nano8080578
[40] Umakoshi Y, Nakano T. The role of ordered domains and slip mode of α2 phase in the plastic behaviour of TiAl crystals containing oriented lamellae [J]. Acta Metall. Mater., 1993, 41(4): 1155
doi: 10.1016/0956-7151(93)90163-M
[41] Cahoon J R, Broughton W H, Kutzak A R. The determination of yield strength from hardness measurements [J]. Metall. Trans., 1971, 2: 1979
doi: 10.1007/BF02913433
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
No Suggested Reading articles found!