|
|
Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites |
MA Xue′e1, HU Meifeng1, SONG Xueli1, CHANG Yue1,2,3( ), ZHA Fei1 |
1.College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China 2.Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070, China 3.Key Laboratory of Polymer Materials of Gansu Province, Lanzhou 730070, China |
|
Cite this article:
MA Xue′e, HU Meifeng, SONG Xueli, CHANG Yue, ZHA Fei. Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites. Chinese Journal of Materials Research, 2025, 39(6): 413-424.
|
Abstract Herein, composites PGS@Zn-In LDO/ZnS/In2S3 were prepared by hydrothermal method with palygorskite (PGS) supported Zn-In LDO (PGS@Zn-In LDO) and thioacetamide as raw materials, namely in situ growth of ZnS and In2S3 on PGS@Zn-In LDO. The light absorption region of PGS@Zn-In LDO/ZnS/In2S3 composites is wider than that of the plain PGS@Zn-In LDO in ultraviolet-visible diffuse reflection spectrum. Photoluminescence spectrum and electrochemical impedance spectroscopy test results show that palygorskite is beneficial for the movement of photogenic charge carrier in Zn-In LDO/ZnS/In2S3 composites. After being subjected to a simulate visible light irradiation for 60 min, the 50% PGS@Zn-In LDO/ZnS/In2S3-2 composite as photocatalyst can even show a degradation rate up to 99.1% for methyl orange, exhibiting the composite possess better catalytic stability. In contrast, the common cations and anions in solution hardly effect on the photodegradation reaction except H2PO4-. It is proposed that the superoxide radicals and vacancies may played a key role in the photocatalytic degradation reaction of MO. Therefore, it may be expected that the degradation rate of acid fuchsin, crystal violet, rhodamine B, malachite green and methylene blue and other common dyes is not less than 97.2% in the same testing conditions.
|
Received: 12 June 2024
|
|
Fund: National Natural Science Foundation of China(21865031);Gansu Province University Industry Support Plan Project(2023CYZC-18) |
Corresponding Authors:
CHANG Yue, Tel: 13919331971, E-mail:cy70@sina.com
|
1 |
Wang Q, O'Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chem. Rev., 2012, 112(7): 4124
|
2 |
Lv X S, Zhang J Y, Dong X G, et al. Layered double hydroxide nanosheets as efficient photo-catalysts for NO removal: band structure engineering and surface hydroxyl ions activation[J]. Appl. Catal., 2020, 277B: 119200
|
3 |
Lu X Y, Xue H R, Gong H, et al. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction[J]. Nano-Micro Lett., 2020, 12(1): 86
|
4 |
Shao M F, Han J B, Wei M, et al. The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis[J]. Chem. Eng. J., 2011, 168(2): 519
|
5 |
Wang L, Zhu Z Q, Wang F, et al. State-of-the-art and prospects of Zn-containing layered double hydroxides (Zn-LDH)-based materials for photocatalytic water remediation[J]. Chemosphere, 2021, 278: 130367
|
6 |
Shen J H, Shi A T, Wu M F, et al. Efficient degradation of bisphenol A over facilely optimized ternary Ag/ZnO/ZnAl‒LDH composite with enhanced photocatalytic performance under visible light irradiation[J]. Solid State Sci., 2022, 132: 106992
|
7 |
Li Z, Zhang Q, Liu X, et al. Mechanochemical synthesis of novel heterostructured Bi2S3/Zn-Al layered double hydroxide nano-particles as efficient visible light reactive Z-scheme photocatalysts[J]. Appl. Surf. Sci. 2018, 452: 123
|
8 |
Hu M Q, Lou H, Yan X L, et al. In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue[J]. Micropor. Mesopor. Mat., 2018, 271: 68
|
9 |
Meng Y, Xia S J, Xue J L, et al. Synthesis and photocatalytic degradation performance for rhodamin B of Zn-Cr-Cu composite metal oxides derived from layered double hydroxides[J]. Chin. J. Inorg. Chem., 2018, 34(9): 1632
|
|
孟 跃, 夏盛杰, 薛继龙 等. 基于水滑石的Zn-Cr-Cu复合金属氧化物的制备及其对罗丹明B的光催化降解性能[J]. 无机化学学报, 2018, 34(9): 1632
|
10 |
Oladipo A A. CuCr2O4@CaFe–LDO photocatalyst for remarkable removal of COD from high-strength olive mill wastewater[J]. J. Colloid Interface Sci., 2021, 591(1): 193
|
11 |
Zheng X G, Zhu Q, Peng H, et al. Efficient solar-light induced photocatalytic capacity of Mg-Al LDO coupled with N-defected g-C3N4 [J]. Chem. Phys. Lett., 2021, 779: 138846
|
12 |
Zhang K, Guo L J. Metal sulphide semiconductors for photocatalytic hydrogen production[J]. Catal. Sci. Technol., 2013, 3(7): 1672
|
13 |
He Z Y, Wang Y, Dong X L, et al. Indium sulfide nanotubes with sulfur vacancies as an efficient photocatalyst for nitrogen fixation[J]. RSC Adv., 2019, 9(38): 21646
|
14 |
Zhao T, Zhu X F, Huang Y F, et al. One-step hydrothermal synthesis of a ternary heterojunction g-C3N4/Bi2S3/In2S3 photocatalyst and its enhanced photocatalytic performance[J]. RSC Adv., 2021, 11(17): 9788
|
15 |
Zhang S S, Ou X Y, Xiang Q, et al. Research progress in metal sulfides for photocatalysis: from activity to stability[J]. Chemosphere, 2022, 303(2): 135085
|
16 |
Xu J J, Liu C, Niu J F, et al. Preparation of In2S3 nanosheets decorated KNbO3 nanocubes composite photocatalysts with significantly enhanced activity under visible light irradiation[J]. Sep. Purif. Technol., 2020, 230: 115861
|
17 |
Li Z L, Liu X R, Li S Y, et al. Shape-controlled hollow Cu2O@CuS nanocubes with enhanced photocatalytic activities towards degradation of tetracycline[J]. Environ. Technol., 2023, 44(18): 2702
|
18 |
Li Y, Yu S, Doronkin D E, et al. Highly dispersed PdS preferably anchored on In2S3 of MnS/In2S3 composite for effective and stable hydrogen production from H2S[J]. J. Catal., 2019, 373: 48
|
19 |
Baral B, Paramanik L, Parida K. Functional facet isotype junction and semiconductor/r-GO minor Schottky barrier tailored In2S3@r-GO@(040/110)-BiVO4 ternary hybrid[J]. J. Colloid Interface Sci., 2021, 585: 519
|
20 |
Chen M Q, Wang Y S, Yang Z L, et al. Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming[J]. Fuel, 2018, 220: 32
|
21 |
Wang W B, Wang A Q. Recent progress in dispersion of palygorskite crystal bundles for nanocomposites[J]. Appl. Clay Sci., 2016, 119: 18
|
22 |
Liu H, Xiang J R, Wang J W, et al. Performance of depolymerized attapulgite-loaded nano-Fe/Ni composite in dechlorination of 2, 4-dichlorophenol from aqueous solution[J]. J. Wuhan Univ. Sci. Technol., 2023, 46(2): 101
|
|
刘 红, 向金蓉, 王珺雯 等. 解聚凹凸棒土负载纳米Fe/Ni材料对水中2, 4-二氯酚的脱氯降解性能[J]. 武汉科技大学学报, 2023, 46(2): 101
|
23 |
Li X Y, Peng K. Hydrothermal synthesis of MoS2 nanosheet/palygorskite nanofiber hybrid nanostructures for enhanced catalytic activity[J]. Appl. Clay Sci., 2018, 162: 175
|
24 |
Huang B Y, Zhang Z X, Zhao C H, et al. Enhanced gas-sensing performance of ZnO@In2O3 core@ shell nanofibers prepared by coaxial electrospinning[J]. Sens. Actuators, 2018, 255B: 2248
|
25 |
Liu F Y, Jiang Y, Yang J, et al. MoS2 nanodot decorated In2S3 nanoplates: a novel heterojunction with enhanced photoelectrochemical performance[J]. Chem. Commun., 2016, 52(9): 1867
|
26 |
Li L Q, Yao C J, Wu L, et al. ZnS covering of ZnO nanorods for enhancing UV emission from ZnO[J]. J. Phys. Chem. C, 2021, 125(25): 13732
|
27 |
Ioannidou T, Anagnostopoulou M, Papoulis D, et al. UiO-66/Palygorskite/TiO2 ternary composites as adsorbents and photocatalysts for methyl orange removal[J]. Appl. Sci., 2022, 12(16): 8223
|
28 |
Zhang J, Zhang T, Liang X C, et al. Efficient photocatalysis of CrVI and methylene blue by dispersive palygorskite-loaded zero-valent iron/carbon nitride[J]. Appl. Clay Sci., 2020, 198: 105817
|
29 |
Lan M, Fan G L, Yang L, et al. Enhanced visible-light-induced photocatalytic performance of a novel ternary semiconductor coupling system based on hybrid Zn-In mixed metal oxide/g-C3N4 composites[J]. RSC Adv., 2015, 5(8): 5725
|
30 |
Zhang L Z, Li Y N, Wang M Q, et al. The construction of ZnS-In2S3 nanonests and their heterojunction boosted visible-light photocatalytic/photoelectrocatalytic performance[J]. New J. Chem., 2019, 43(36): 14402
|
31 |
Valente J S, Tzompantzi F, Prince J, et al. Adsorption and photocatalytic degradation of phenol and 2, 4 dichlorophenoxiacetic acid by Mg-Zn-Al layered double hydroxides[J]. Appl. Catal., 2009, 90B(3-4): 330
|
32 |
Yuan X Z, Jiang L B, Liang J, et al. In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation[J]. Chem. Eng. J., 2019, 356: 371
|
33 |
Zhou L C. Preparation of fluorine modified titanium dioxide catalyst and its photocatalytic degradation for oilfield wastewater[J]. Chin. J. Mater. Res., 2024, 38(2): 141
|
|
周立臣. 等离子体氟改性TiO2催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141
|
34 |
Li X Z, He C L, Zuo S X, et al. Photocatalytic nitrogen fixation over fluoride/attapulgite nanocomposite: Effect of upconversion and fluorine vacancy[J]. Sol. Energy, 2019, 191: 251
|
35 |
Gunnagol R M, Rabinal M H K. TiO2-graphene nanocomposites for effective photocatalytic degradation of Rhodamine-B dye[J]. ChemistrySelect, 2018, 3(9): 2578
|
36 |
Lin Y, Yang C P, Wu S H, et al. Construction of built-in electric field within silver phosphate photocatalyst for enhanced removal of recalcitrant organic pollutants[J]. Adv. Funct. Mater., 2020, 30(38): 2002918
|
37 |
Hou J, Yang P Z, Deng Q H, et al. Preparation and performance of graphite/TiO2 composite photocatalyst[J]. Chin. J. Mater. Res., 2021, 35(9): 703
|
|
侯 静, 杨培志, 郑勤红 等. 石墨/TiO2复合光催化剂的制备和性能[J]. 材料研究学报, 2021, 35(9): 703
|
38 |
Liang X, Jiang Y L, Cui F K, et al. Catalyst for preparation of succinic anhydride by hydrogenation of maleic anhydride and preparation method thereof [P]. Chin Pat., 110227469A, 2019
|
|
梁 旭, 蒋元力, 崔发科 等. 一种顺酐加氢制备丁二酸酐的催化剂及其制备方法 [P]. 中国专利, 110227469A, 2019)
|
39 |
Wang Y J, Lu K C, Feng C G. Influence of inorganic anions and organic additives on photocatalytic degradation of methyl orange with supported polyoxometalates as photocatalyst[J]. J. Rare Earth, 2013, 31(4): 360
|
40 |
Hu C, Yu J C, Hao Z, et al. Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes[J]. Appl. Catal., 2003, 46B(1): 35
|
41 |
Zhang X L, Zhang N, Gan C X, et al. Synthesis of In2S3/UiO-66 hybrid with enhanced photocatalytic activity towards methyl orange and tetracycline hydrochloride degradation under visible-light irradiation[J]. Mat. Sci. Semicon. Proc., 2019, 91: 212
|
42 |
Qiao Z, Yan T J, Li W J, et al. In situ anion exchange synthesis of In2S3/In(OH)3 heterostructures for efficient photocatalytic degradation of MO under solar light[J]. New J. Chem., 2017, 41(8): 3134
|
43 |
Zeng L, Peng T J, Sun H J, et al. Synthesis and photocatalytic activity in visible light of Mn-doped LaNi1- x Mn x O3 [J]. Chin. Mater. Rep., 2021, 35(24): 24018
|
|
曾 鹂, 彭同江, 孙红娟 等. Mn掺杂LaNi1- x Mn x O3的合成及在可见光下的光催化活性[J]. 材料导报, 2021, 35(24): 24018
|
44 |
Sloman S R I, Sain S, Olszówka J, et al. Reducing indium dependence by heterostructure design in SnO2-In2S3 nanocomposites[J]. Mater. Chem. Phys., 2022, 277: 125463
|
45 |
Yang X P, Luo Z, Wang D, et al. Simple hydrothermal preparation of sulfur fluoride-doped g-C3N4 and its photocatalytic degradation of methyl orange[J]. Mat. Sci. Eng., 2023, 288B: 116216
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|