Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (6): 413-424    DOI: 10.11901/1005.3093.2024.273
ARTICLES Current Issue | Archive | Adv Search |
Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites
MA Xue′e1, HU Meifeng1, SONG Xueli1, CHANG Yue1,2,3(), ZHA Fei1
1.College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
2.Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070, China
3.Key Laboratory of Polymer Materials of Gansu Province, Lanzhou 730070, China
Cite this article: 

MA Xue′e, HU Meifeng, SONG Xueli, CHANG Yue, ZHA Fei. Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites. Chinese Journal of Materials Research, 2025, 39(6): 413-424.

Download:  HTML  PDF(12028KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, composites PGS@Zn-In LDO/ZnS/In2S3 were prepared by hydrothermal method with palygorskite (PGS) supported Zn-In LDO (PGS@Zn-In LDO) and thioacetamide as raw materials, namely in situ growth of ZnS and In2S3 on PGS@Zn-In LDO. The light absorption region of PGS@Zn-In LDO/ZnS/In2S3 composites is wider than that of the plain PGS@Zn-In LDO in ultraviolet-visible diffuse reflection spectrum. Photoluminescence spectrum and electrochemical impedance spectroscopy test results show that palygorskite is beneficial for the movement of photogenic charge carrier in Zn-In LDO/ZnS/In2S3 composites. After being subjected to a simulate visible light irradiation for 60 min, the 50% PGS@Zn-In LDO/ZnS/In2S3-2 composite as photocatalyst can even show a degradation rate up to 99.1% for methyl orange, exhibiting the composite possess better catalytic stability. In contrast, the common cations and anions in solution hardly effect on the photodegradation reaction except H2PO4-. It is proposed that the superoxide radicals and vacancies may played a key role in the photocatalytic degradation reaction of MO. Therefore, it may be expected that the degradation rate of acid fuchsin, crystal violet, rhodamine B, malachite green and methylene blue and other common dyes is not less than 97.2% in the same testing conditions.

Key words:  composites      industrial catalysis      dye wastewater      photocatalytic degradation      palygorskite supported Zn-In LDO/ZnS/In2S3     
Received:  12 June 2024     
ZTFLH:  O649.4  
Fund: National Natural Science Foundation of China(21865031);Gansu Province University Industry Support Plan Project(2023CYZC-18)
Corresponding Authors:  CHANG Yue, Tel: 13919331971, E-mail:cy70@sina.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.273     OR     https://www.cjmr.org/EN/Y2025/V39/I6/413

Fig.1  SEM images of Zn-In LDH, Zn-In LDO, LDO/ZS/IS-2 and 50%PGS@LDO/ZS/IS-2 (a~d) and TEM of Zn-In LDO (e, f), 50%PGS@LDO/ZS/IS-2 (g, h)
Fig.2  XRD patterns of Zn-In LDO (a), LDO/ZS/IS-2 (b) and 50%PGS@LDO/ZS/IS-2 (c)
Fig.3  XPS survey spectra of Zn-In LDO and 50%PGS@LDO/ZS/IS-2 (a), high-resolution scans for In 3d (b), Zn 2p (c) and S 2p (d) electrons of Zn-In LDO and 50%PGS@LDO/ZS/IS-2
SampleSurface area / m2·g-1Pore volume / cm3·g-1Pore diameter / nm
Zn-In LDO90.740.1453.321
LDO/ZS/IS-2143.400.3613.513
50%PGS@LDO/ZS/IS-2143.960.5463.523
Table 1  Surface area, pore volume and pore diameter of different materials
Fig.4  N2 adsorption-desorption isotherm of different materials (a) and corresponding pore size distribution curve (b)
Fig.5  UV-Vis diffuse reflection spectra of different samples (a) and corresponding band gap widths (b)
Fig.6  photoluminescence spectra of different samples (a), EIS spectra of Zn-In LDO and LDO/ZS/IS-2 and 50%PGS@LDO/ZS/IS-2 (b)
Fig.7  Degradation of MO by LDO/ZS/IS with different vulcanization amounts (a) and corresponding kinetic fitting curves (b)
Fig.8  Effect of photocatalytic degradation for MO by different PGS@LDO/ZS/IS-2 (a) and photodegradation different dyes using 50%PGS@LDO/ZS/IS-2 (b)
Fig.9  Influence of catalyst amount (a) and initial dye concentration (b) on photocatalytic reaction
Fig.10  Effects of different cations (a) and anions (b) on MO photocatalytic reaction
Fig.11  Curves of cyclic stability for 50%PGS@LDO/ZS/IS-2 composites
SampleCat./MO (mg/mg)Xenon lamp / WTime / minDegradation rate / %Ref.
In2S3/UiO-6633.3/15006026.9[41]
In2S3/In2O350/130018060.0[42]
5% graphite/TiO210/13007095.1[37]
LaNi1-x Mn x O3100/130012099.5[43]
SnO2-In2S313.3/130012088.4[44]
SF6 doped g-C3N4100/12006062.0[45]
50%PGS@LDO/ZS/IS-233.3/13006099.1This work
Table 2  Results of photocatalytic degradation for MO under visible light by different photocatalysts
Fig.12  Effect of active species on photocatalytic degradation
Fig.13  Mechanism of photocatalytic degradation
1 Wang Q, O'Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chem. Rev., 2012, 112(7): 4124
2 Lv X S, Zhang J Y, Dong X G, et al. Layered double hydroxide nanosheets as efficient photo-catalysts for NO removal: band structure engineering and surface hydroxyl ions activation[J]. Appl. Catal., 2020, 277B: 119200
3 Lu X Y, Xue H R, Gong H, et al. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction[J]. Nano-Micro Lett., 2020, 12(1): 86
4 Shao M F, Han J B, Wei M, et al. The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis[J]. Chem. Eng. J., 2011, 168(2): 519
5 Wang L, Zhu Z Q, Wang F, et al. State-of-the-art and prospects of Zn-containing layered double hydroxides (Zn-LDH)-based materials for photocatalytic water remediation[J]. Chemosphere, 2021, 278: 130367
6 Shen J H, Shi A T, Wu M F, et al. Efficient degradation of bisphenol A over facilely optimized ternary Ag/ZnO/ZnAl‒LDH composite with enhanced photocatalytic performance under visible light irradiation[J]. Solid State Sci., 2022, 132: 106992
7 Li Z, Zhang Q, Liu X, et al. Mechanochemical synthesis of novel heterostructured Bi2S3/Zn-Al layered double hydroxide nano-particles as efficient visible light reactive Z-scheme photocatalysts[J]. Appl. Surf. Sci. 2018, 452: 123
8 Hu M Q, Lou H, Yan X L, et al. In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue[J]. Micropor. Mesopor. Mat., 2018, 271: 68
9 Meng Y, Xia S J, Xue J L, et al. Synthesis and photocatalytic degradation performance for rhodamin B of Zn-Cr-Cu composite metal oxides derived from layered double hydroxides[J]. Chin. J. Inorg. Chem., 2018, 34(9): 1632
孟 跃, 夏盛杰, 薛继龙 等. 基于水滑石的Zn-Cr-Cu复合金属氧化物的制备及其对罗丹明B的光催化降解性能[J]. 无机化学学报, 2018, 34(9): 1632
10 Oladipo A A. CuCr2O4@CaFe–LDO photocatalyst for remarkable removal of COD from high-strength olive mill wastewater[J]. J. Colloid Interface Sci., 2021, 591(1): 193
11 Zheng X G, Zhu Q, Peng H, et al. Efficient solar-light induced photocatalytic capacity of Mg-Al LDO coupled with N-defected g-C3N4 [J]. Chem. Phys. Lett., 2021, 779: 138846
12 Zhang K, Guo L J. Metal sulphide semiconductors for photocatalytic hydrogen production[J]. Catal. Sci. Technol., 2013, 3(7): 1672
13 He Z Y, Wang Y, Dong X L, et al. Indium sulfide nanotubes with sulfur vacancies as an efficient photocatalyst for nitrogen fixation[J]. RSC Adv., 2019, 9(38): 21646
14 Zhao T, Zhu X F, Huang Y F, et al. One-step hydrothermal synthesis of a ternary heterojunction g-C3N4/Bi2S3/In2S3 photocatalyst and its enhanced photocatalytic performance[J]. RSC Adv., 2021, 11(17): 9788
15 Zhang S S, Ou X Y, Xiang Q, et al. Research progress in metal sulfides for photocatalysis: from activity to stability[J]. Chemosphere, 2022, 303(2): 135085
16 Xu J J, Liu C, Niu J F, et al. Preparation of In2S3 nanosheets decorated KNbO3 nanocubes composite photocatalysts with significantly enhanced activity under visible light irradiation[J]. Sep. Purif. Technol., 2020, 230: 115861
17 Li Z L, Liu X R, Li S Y, et al. Shape-controlled hollow Cu2O@CuS nanocubes with enhanced photocatalytic activities towards degradation of tetracycline[J]. Environ. Technol., 2023, 44(18): 2702
18 Li Y, Yu S, Doronkin D E, et al. Highly dispersed PdS preferably anchored on In2S3 of MnS/In2S3 composite for effective and stable hydrogen production from H2S[J]. J. Catal., 2019, 373: 48
19 Baral B, Paramanik L, Parida K. Functional facet isotype junction and semiconductor/r-GO minor Schottky barrier tailored In2S3@r-GO@(040/110)-BiVO4 ternary hybrid[J]. J. Colloid Interface Sci., 2021, 585: 519
20 Chen M Q, Wang Y S, Yang Z L, et al. Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming[J]. Fuel, 2018, 220: 32
21 Wang W B, Wang A Q. Recent progress in dispersion of palygorskite crystal bundles for nanocomposites[J]. Appl. Clay Sci., 2016, 119: 18
22 Liu H, Xiang J R, Wang J W, et al. Performance of depolymerized attapulgite-loaded nano-Fe/Ni composite in dechlorination of 2, 4-dichlorophenol from aqueous solution[J]. J. Wuhan Univ. Sci. Technol., 2023, 46(2): 101
刘 红, 向金蓉, 王珺雯 等. 解聚凹凸棒土负载纳米Fe/Ni材料对水中2, 4-二氯酚的脱氯降解性能[J]. 武汉科技大学学报, 2023, 46(2): 101
23 Li X Y, Peng K. Hydrothermal synthesis of MoS2 nanosheet/palygorskite nanofiber hybrid nanostructures for enhanced catalytic activity[J]. Appl. Clay Sci., 2018, 162: 175
24 Huang B Y, Zhang Z X, Zhao C H, et al. Enhanced gas-sensing performance of ZnO@In2O3 core@ shell nanofibers prepared by coaxial electrospinning[J]. Sens. Actuators, 2018, 255B: 2248
25 Liu F Y, Jiang Y, Yang J, et al. MoS2 nanodot decorated In2S3 nanoplates: a novel heterojunction with enhanced photoelectrochemical performance[J]. Chem. Commun., 2016, 52(9): 1867
26 Li L Q, Yao C J, Wu L, et al. ZnS covering of ZnO nanorods for enhancing UV emission from ZnO[J]. J. Phys. Chem. C, 2021, 125(25): 13732
27 Ioannidou T, Anagnostopoulou M, Papoulis D, et al. UiO-66/Palygorskite/TiO2 ternary composites as adsorbents and photocatalysts for methyl orange removal[J]. Appl. Sci., 2022, 12(16): 8223
28 Zhang J, Zhang T, Liang X C, et al. Efficient photocatalysis of CrVI and methylene blue by dispersive palygorskite-loaded zero-valent iron/carbon nitride[J]. Appl. Clay Sci., 2020, 198: 105817
29 Lan M, Fan G L, Yang L, et al. Enhanced visible-light-induced photocatalytic performance of a novel ternary semiconductor coupling system based on hybrid Zn-In mixed metal oxide/g-C3N4 composites[J]. RSC Adv., 2015, 5(8): 5725
30 Zhang L Z, Li Y N, Wang M Q, et al. The construction of ZnS-In2S3 nanonests and their heterojunction boosted visible-light photocatalytic/photoelectrocatalytic performance[J]. New J. Chem., 2019, 43(36): 14402
31 Valente J S, Tzompantzi F, Prince J, et al. Adsorption and photocatalytic degradation of phenol and 2, 4 dichlorophenoxiacetic acid by Mg-Zn-Al layered double hydroxides[J]. Appl. Catal., 2009, 90B(3-4): 330
32 Yuan X Z, Jiang L B, Liang J, et al. In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation[J]. Chem. Eng. J., 2019, 356: 371
33 Zhou L C. Preparation of fluorine modified titanium dioxide catalyst and its photocatalytic degradation for oilfield wastewater[J]. Chin. J. Mater. Res., 2024, 38(2): 141
周立臣. 等离子体氟改性TiO2催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141
34 Li X Z, He C L, Zuo S X, et al. Photocatalytic nitrogen fixation over fluoride/attapulgite nanocomposite: Effect of upconversion and fluorine vacancy[J]. Sol. Energy, 2019, 191: 251
35 Gunnagol R M, Rabinal M H K. TiO2-graphene nanocomposites for effective photocatalytic degradation of Rhodamine-B dye[J]. ChemistrySelect, 2018, 3(9): 2578
36 Lin Y, Yang C P, Wu S H, et al. Construction of built-in electric field within silver phosphate photocatalyst for enhanced removal of recalcitrant organic pollutants[J]. Adv. Funct. Mater., 2020, 30(38): 2002918
37 Hou J, Yang P Z, Deng Q H, et al. Preparation and performance of graphite/TiO2 composite photocatalyst[J]. Chin. J. Mater. Res., 2021, 35(9): 703
侯 静, 杨培志, 郑勤红 等. 石墨/TiO2复合光催化剂的制备和性能[J]. 材料研究学报, 2021, 35(9): 703
38 Liang X, Jiang Y L, Cui F K, et al. Catalyst for preparation of succinic anhydride by hydrogenation of maleic anhydride and preparation method thereof [P]. Chin Pat., 110227469A, 2019
梁 旭, 蒋元力, 崔发科 等. 一种顺酐加氢制备丁二酸酐的催化剂及其制备方法 [P]. 中国专利, 110227469A, 2019)
39 Wang Y J, Lu K C, Feng C G. Influence of inorganic anions and organic additives on photocatalytic degradation of methyl orange with supported polyoxometalates as photocatalyst[J]. J. Rare Earth, 2013, 31(4): 360
40 Hu C, Yu J C, Hao Z, et al. Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes[J]. Appl. Catal., 2003, 46B(1): 35
41 Zhang X L, Zhang N, Gan C X, et al. Synthesis of In2S3/UiO-66 hybrid with enhanced photocatalytic activity towards methyl orange and tetracycline hydrochloride degradation under visible-light irradiation[J]. Mat. Sci. Semicon. Proc., 2019, 91: 212
42 Qiao Z, Yan T J, Li W J, et al. In situ anion exchange synthesis of In2S3/In(OH)3 heterostructures for efficient photocatalytic degradation of MO under solar light[J]. New J. Chem., 2017, 41(8): 3134
43 Zeng L, Peng T J, Sun H J, et al. Synthesis and photocatalytic activity in visible light of Mn-doped LaNi1- x Mn x O3 [J]. Chin. Mater. Rep., 2021, 35(24): 24018
曾 鹂, 彭同江, 孙红娟 等. Mn掺杂LaNi1- x Mn x O3的合成及在可见光下的光催化活性[J]. 材料导报, 2021, 35(24): 24018
44 Sloman S R I, Sain S, Olszówka J, et al. Reducing indium dependence by heterostructure design in SnO2-In2S3 nanocomposites[J]. Mater. Chem. Phys., 2022, 277: 125463
45 Yang X P, Luo Z, Wang D, et al. Simple hydrothermal preparation of sulfur fluoride-doped g-C3N4 and its photocatalytic degradation of methyl orange[J]. Mat. Sci. Eng., 2023, 288B: 116216
[1] HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. 材料研究学报, 2025, 39(5): 353-361.
[2] BAO Xiukun, SHI Guimei. Preparation and Microwave Absorption Properties of NiCo@C(N)/NC Nanocomposites[J]. 材料研究学报, 2025, 39(2): 126-136.
[3] HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method[J]. 材料研究学报, 2024, 38(8): 605-613.
[4] HAO Ziheng, ZHENG Liumenghan, ZHANG Ni, JIANG Entong, WANG Guozheng, YANG Jikai. Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes[J]. 材料研究学报, 2024, 38(8): 569-575.
[5] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[6] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[7] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[8] HE Wang, CHEN Yanan, TANG Meifang, GAO Wenjun, SU Chen, GUO Shengfeng. Research on the Degradation Performance of Azo Dyes for MoFe-based Amorphous Alloy Wires[J]. 材料研究学报, 2024, 38(11): 837-848.
[9] MA Yuan, WANG Han, NI Zhongqiang, ZHANG Jiangang, ZHANG Ruonan, SUN Xinyang, LI Chusen, LIU Chang, ZENG You. Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2024, 38(1): 61-70.
[10] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[11] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[12] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] XU Wenyu, SUN Jiawen, ZHU Yaofeng. Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating[J]. 材料研究学报, 2023, 37(12): 952-960.
No Suggested Reading articles found!