Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (9): 694-700    DOI: 10.11901/1005.3093.2024.345
ARTICLES Current Issue | Archive | Adv Search |
Glycidyl Methacrylate Polymer Grafting on Regenerated Cellulose Membrane Surface by Atom Transfer Radical Polymerization
GAO Ying1, WANG Junbo1, MI Yace1(), SUN Junmin1,2()
1.College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2.Datang International Power Generation Co, Ltd. High Aluminum Coal Resources Development and Utilization R D Center, Ordos 010300, China
Cite this article: 

GAO Ying, WANG Junbo, MI Yace, SUN Junmin. Glycidyl Methacrylate Polymer Grafting on Regenerated Cellulose Membrane Surface by Atom Transfer Radical Polymerization. Chinese Journal of Materials Research, 2025, 39(9): 694-700.

Download:  HTML  PDF(9981KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As an advanced technique capable of finely regulating the properties of materials, the controllable grafting technique has gradually become a research hotspot in the field of material science and technology due to its high flexibility and customization. In this study, the regenerated cellulose membrane was surface grafted with poly glycidyl methacrylate (PGMA) via controllable grafting technique by taking 2-bromoisobutyryl bromide (BIBBr) as initiator and CuBr as catalyst. The effect of several key parameters on the grafting effect were systematically investigated, including dosages of initiator BIBBr, monomer GMA and catalyst, CuBr as well as the reaction temperature. The aim is to introduce epoxy groups in a controllable manner and pave the way for downstream separation and purification. The results show that the amount of initiator BIBBr is directly related to the density of the surface grafted initiator, which can effectively control the grafting rate of GMA. By the optimized conditions, i.e., the dose of initiator BIBBr, which is 3 times of the hydroxyl equivalent, the dose of GMA 17.83 mmol, and of CuBr 0.18 mmol, while the reaction at 60 °C, the grafting reaction may result in a grafting rate up to 10.51% (mass fraction) with an epoxy value 12.63 μmol/g. This study provides an important reference for the functional design of cellulose membranes.

Key words:  surface and interface in the materials      regenerated cellulose membrane      atom transfer radical polymerization      poly (glycidyl methacrylate)      epoxy group     
Received:  15 August 2024     
ZTFLH:  O69  
Fund: National Natural Science Foundation of China(22365023);Applied Technology Research and Development Project of Jungar Qi(2023YY-03)
Corresponding Authors:  MI Yace, Tel: 18004853459, E-mail: miyacetx@163.com;
SUN Junmin, Tel: 18947196196, E-mail: fangwq_2005@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.345     OR     https://www.cjmr.org/EN/Y2025/V39/I9/694

Sample numberTemperature / oCDMAP / mmolBIBBr / mmolTEA / mL
RC-BiB(I1)304.408.911.00
RC-BiB(I2)13.37
RC-BiB(I3)17.83
Table 1  Dosage of each component in the fixed initiator process
Sample numberTemperature / oCGMA / mmolCuBr / mmolPMEDTA/ mmol
RC-BiB(I2N1)5017.830.090.40
RC-BiB(I2N2)6017.830.09
RC-BiB(I2N3)7017.830.09
RC-BiB(I2N4)6013.370.09
RC-BiB(I2N5)6022.280.09
RC-BiB(I2N6)6017.830.13
RC-BiB(I2N7)6017.830.18
Table 2  Reaction temperature and dosage of each component in the GMA grafting process
Fig.1  Technical roadmap for grafting PGMA onto the surface of regenerated cellulose membrane based on ATRP technology
Fig.2  FTIR spectra of RC and RC-BiB (I1), RC-BiB (I2) and RC-BiB(I3)
Fig.3  SEM and EDS images of regenerated cellulose membrane (RC-BiB(I2)) fixed with initiator (a) SEM image, (b) EDS image of Br element
Fig.4  SEM images of regenerated cellulose membrane before and after grafting with PGMA (a, b) RC sample, (c, d) RC-BiB(I2N1) sample, (e, f) RC-BiB(I2N2) sample, (g, h) RC-BiB(I2N3) sample, (i, j) RC-BiB(I2N4) sample, (k, l) RC-BiB(I2N5) sample, (m, n) RC-BiB(I2N6) sample, (o, p) RC-BiB(I2N7) sample
Fig.5  FTIR spectra of regenerated cellulose membrane before (a) and after (b) grafting with PGMA
RC-BiB(I2N1)RC-BiB(I2N2)RC-BiB(I2N3)RC-BiB(I2N4)RC-BiB(I2N5)RC-BiB(I2N6)RC-BiB(I2N7)
Epoxy value / μmol·g-12.195.375.382.455.428.5712.63
Percent grafting / %2.034.864.872.294.917.1310.51

Epoxy value

standard deviation

0.030.030.050.270.020.020.18

Percent grafting

standard deviation

0.050.030.090.030.060.130.25
Table 3  Epoxy value and grafting rate of PGMA grafted samples of regenerated cellulose membranes
[1] Liu Y H, Li S B, Wang Z Y, et al. Ultrasound in cellulose-based hydrogel for biomedical use: from extraction to preparation [J]. Colloids Surf., 2022, 212B: 112368
[2] Kang H L, Liu R G, Huang Y. Graft modification of cellulose: methods, properties and applications [J]. Polymer, 2015, 70: A1
[3] Bayramoglu G, Arica M Y. Grafting of regenerated cellulose films with fibrous polymer and modified into phosphate and sulfate groups: application for removal of a model azo-dye [J]. Colloids Surf., 2021, 614A: 126173
[4] Pan K, Zhang X W, Cao B. Surface‐initiated atom transfer radical polymerization of regenerated cellulose membranes with thermo‐responsive properties [J]. Polym. Int., 2010, 59(6): 733
[5] Pan K, Zhang X W, Ren R M, et al. Double stimuli-responsive membranes grafted with block copolymer by ATRP method [J]. J. Membr. Sci., 2010, 356(1-2): 133
[6] Ye J L, Chu J C, Yin J, et al. Surface modification of regenerated cellulose membrane based on thiolactone chemistry-a novel platform for mixed mode membrane adsorbers [J]. Appl. Surf. Sci., 2020, 511: 145539
[7] Qiu X Y, Ren X Q, Hu S W. Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP [J]. Carbohydr. Polym., 2013, 92(2): 1887
[8] Yang X Q, Li N, Constantinesco I, et al. Choline phosphate functionalized cellulose membrane: a potential hemostatic dressing based on a unique bioadhesion mechanism [J]. Acta Biomater., 2016, 40: 212
doi: S1742-7061(16)30307-5 pmid: 27345136
[9] Chmielarz P, Fantin M, Park S, et al. Electrochemically mediated atom transfer radical polymerization (eATRP) [J]. Prog. Polym. Sci., 2017, 69: 47
[10] Krys P, Matyjaszewski K. Kinetics of atom transfer radical polymerization [J]. Eur. Polym. J., 2017, 89: 482
[11] Matyjaszewski K. Atom transfer radical polymerization: from mechanisms to applications [J]. Isr. J. Chem., 2012, 52(3‐4): 206
[12] Macior A, Zaborniak I, Chmielarz P, et al. A new protocol for ash wood modification: synthesis of hydrophobic and antibacterial brushes from the wood surface [J]. Molecules, 2022, 27(3): 890
[13] Zaborniak I, Chmielarz P, Matyjaszewski K. Modification of wood-based materials by atom transfer radical polymerization methods [J]. Eur. Polym. J., 2019, 120: 109253
[14] Zaborniak I, Macior A, Chmielarz P, et al. Hydrophobic modification of fir wood surface via low ppm ATRP strategy [J]. Polymer, 2021, 228: 123942
[15] Zhang Z, Sèbe G, Hou Y L, et al. Grafting polymers from cellulose nanocrystals via surface‐initiated atom transfer radical polymerization [J]. J. Appl. Polym. Sci., 2021, 138(48): 51458
[16] Zhang J, Liu H, Liu H, et al. Using diethylamine as crosslinking agent for getting polyepichlorohydrin-based composite membrane with high tensile strength and good chemical stability [J]. Polym. Bull., 2017, 74(3): 625
[17] Wang J, Sproul R T, Anderson L S, et al. Development of multimodal membrane adsorbers for antibody purification using atom transfer radical polymerization [J]. Polymer, 2014, 55(6): 1404
[18] Qian X L, Fan H, Wang C Z, et al. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly (glycidyl methacrylate) and subsequent derivatization with diethylamine [J]. Appl. Surf. Sci., 2013, 271: 240
[19] Wang J, Jenkins E W, Robinson J R, et al. A new multimodal membrane adsorber for monoclonal antibody purifications [J]. J. Membr. Sci., 2015, 492: 137
[20] Yu H S, Kim J S, Vasu V, et al. Cu-mediated butadiene ATRP [J]. ACS Catal., 2020, 10(12): 6645
[21] Fantin M, Tognella E, Antonello A, et al. Effects of solvent and monomer on the kinetics of radical generation in atom transfer radical polymerization [J]. Chem Electro Chem, 2024, 11(6): e202300662
[22] Dworakowska S, Lorandi F, Gorczyński A, et al. Toward green atom transfer radical polymerization: current status and future challenges [J]. Adv. Sci., 2022, 9(19): 2106076
[23] Flejszar M, Chmielarz P, Smenda J, et al. Following principles of green chemistry: low ppm photo-ATRP of DMAEMA in water/ethanol mixture [J]. Polymer, 2021, 228: 123905
[24] Chmielarz P, Sobkowiak A. Ultralow ppm seATRP synthesis of PEO-b-PBA copolymers [J]. J. Polym. Res., 2017, 24: 77
[1] PENG Yihe, OU Baoli, PENG Yongjie, WEN Mieyi, CHENG Tianyu, CHEN Diming. Preparation and Properties of Cerium Dioxide-Graphene Oxide Hybrid Materials (CeO2-GO)/Epoxy Resin Anti-corrosive Composite Coating[J]. 材料研究学报, 2025, 39(4): 259-271.
[2] LI Qingpeng, LIU Jiaxing, AN Xiaoyun, LI Yongzhi, GAO Meng, SUN Hongtao, WANG Na. Preparation and Properties of High Performance Silane Conversion Film on Electroplated Zinc Surface[J]. 材料研究学报, 2025, 39(4): 296-304.
[3] LI Honglei, LIU Chuang, LU Zhengwei, CHU Tianyi, CHEN Yuqiu, JIANG Sumeng, GONG Jun, PEI Zhiliang. Preparation and Performance of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, 39(4): 314-320.
[4] WANG Jing, HE Wenzheng, YANG Shuang, GENG Wen, REN Rong, XIONG Xuhai. Effect of Argon Plasma Treatment on Interface Performance of Aramid Fiber Ⅲ / Epoxy Composites[J]. 材料研究学报, 2025, 39(3): 185-197.
[5] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
[6] HUANG Di, NIU Yunsong, LI Shuai, DONG Zhihong, BAO Zebin, ZHU Shenglong. Thermal Cycling and Flame Thermal Shocking Failure Mechanism of Tetragonal Yttria-stabilized Zirconia TBCs Prepared on High Temperature Alloys by Suspension Plasma Spraying[J]. 材料研究学报, 2024, 38(9): 691-700.
[7] LI Yuanyuan, LIANG Jian, XIONG Ziliu, MIAO Bin, TIAN Xiugang, QI Jianjun, ZHENG Shijian. Influence of Alloying Elements on Interfacial Layer- and Galvanized Layer-Structure of New Hot-dip Galvanized Dual-phase Steel[J]. 材料研究学报, 2024, 38(6): 446-452.
[8] ZHANG Jia, GAO Minghao, LUAN Shengjia, XU Na, CHANG Hui, DENG Yuting, HOU Wanliang, CHANG Xinchun. Effect of Feedstock Powders on Microstructure and Properties of CoNiCrAlY Coatings[J]. 材料研究学报, 2024, 38(5): 347-355.
[9] WANG Huiming, WANG Jinlong, LI Yingju, ZHANG Hongyi, LV Xiaoren. Finite Element Analysis of Dry Friction Wear of Al-based Composite Coatings[J]. 材料研究学报, 2024, 38(12): 941-949.
[10] CHEN Jihong, WANG Yongli, XIONG Liangyin, SONG Lixin. Preparation of Low Activity Fe-Al Coating on 316L Steel Surface[J]. 材料研究学报, 2024, 38(11): 801-810.
[11] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[12] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[13] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[14] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[15] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
No Suggested Reading articles found!