Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (12): 924-932    DOI: 10.11901/1005.3093.2022.656
ARTICLES Current Issue | Archive | Adv Search |
Effect of D-amino Acids on Corrosion Behavior of Different Steels due to Mixed Bacteria
XU Congmin1(), ZHANG Jinrui1, ZHU Wensheng2, YANG Xing1, YAO Pan1, LI Xueli1
1.School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2.CNOOC Changzhou Paint and Coating Industry Research Institute Co., Ltd., Changzhou 213000, China
Cite this article: 

XU Congmin, ZHANG Jinrui, ZHU Wensheng, YANG Xing, YAO Pan, LI Xueli. Effect of D-amino Acids on Corrosion Behavior of Different Steels due to Mixed Bacteria. Chinese Journal of Materials Research, 2023, 37(12): 924-932.

Download:  HTML  PDF(9208KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of biocide and D-amino acid on the corrosion behavior of 20# carbon steel, N80 steel and P110 steel in the media of SRB+IOB mixed bacteria, was comparatively assessed by using weight loss method, electrochemical measurements and SEM. In the tests without biocide, P110 suffered from severe corrosion with weight loss of 0.278 mm/a, while weight loss of 20# and N80 were 0.149 and 0.148 mm/a respectively, while uniform and dense biofilms with deposited corrosion products formed on the surface of all the steels; in the tests with biocide, the corrosion of the three steels slowed down, it is found that the formed rust scales on the surface of steels with significantly lower content of Ca Mg, P, and S, but with cracks and spallation steels. The electrochemical measurement results also revealed that the corrosion rate of three steels was significantly reduced when they were immersed for 14 d in the corrosive media with addition of biocides. The corrosion mechanism of SRB and IOB mixed bacteria is probably due to that SRB oxidizes Fe to Fe2+ through its own metabolism, and Fe2+ is further oxidized by IOB to Fe3+, and IOB provides environmental conditions for SRB so as to form a synergistic effect. It is proposed that D-amino acids and biocide effectively inhibit MIC behavior by regulating the bacterial gene expression and destroys the cell structure, as well as the oxygen concentration difference environment. Due to the different content of C, Cu and others, the corrosion rate of the three steels may be different under the sterile conditions.

Key words:  material failure and protection      D-amino acids      mixed bacteria      carbon steel      biocides      biofilms      corrosion behavior     
Received:  10 December 2022     
ZTFLH:  TG172.6  
Fund: National Natural Science Foundation of China(51974245);National Natural Science Foundation of China(21808182);Shaanxi Province Key R&D Program Projects(2020GY-234);Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, School of Materials Science and Engineering, Xi'an Shiyou University, “Materials Science and Engineering” Provincial Advantageous Discipline Project of Xi'an Shiyou University(YS37020203);Postgraduate Innovation and Practical Ability Training Program of Xi'an Shiyou University(YCS21212131)
Corresponding Authors:  XU Congmin, Tel: 18092078500, E-mail: cmxu@xsyu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.656     OR     https://www.cjmr.org/EN/Y2023/V37/I12/924

SteelCMnSiSPCu
20#00.200.390.210.0050.0160.165
N800.471.550.250.0080.015-
P1100.260.650.250.0030.0060.036
Table 1  Chemical compositions of three test steels (mass fraction, %)
Chemical compositionHydrochloric acid / mLDistilled water / mLHexamethy ltetramine / g
Amount2502501.75
Table 2  Chemical composition of rust removing solution
ClassificationAverage corrosion rate
Low<0.025
Moderate0.025~0.12
High0.13~0.25
Severe>0.25
Table 3  Corrosion rate regulations in NACE RP-0775-2005
Fig.1  Corrosion rates of 20#, N80 and P110 steels in the solutions without and with industrial bactericides
SteelsSRB antibacterial rate / %IOB antibacterial rate / %Corrosion inhibition rate / %
20#99.0592.5035.15
N8099.7385.0060.32
P11099.0084.2138.08
Table 4  Sterilization and corrosion inhibition rates of three steels after immersion for 14 d in SRB+IOB medium
Fig.2  Macroscopic morphologies of the cleaned surfaces of three steels after immersion for 14 d in SRB + IOB media (left side) without and (right side) with industrial bactericides (a) 20#, (b) N80, (c) P110
Fig.3  SEM images and EDS patterns of the surfaces of three steels after 14 d immersion in SRB+IOB media (a, b, c) without and (d, e, f) with industrial bactericides
Fig.4  Electrochemical polarization curves of three steels after 14 d immersion in SRB+IOB medium
NumberSteelsba / mV·dec-1bc / mV·dec-1Icorr / A·cm-2Ecorr / mV
Without industrial bactericide group120#42.22101.920.8×10-5-759
2N8071.16294.99.11×10-5-619
3P11050.45694.126.4×10-5-586
With industrial bactericide group420#102.2226.93.58×10-5-702
5N80129.8125.12.44×10-5-735
6P11037.87183.34.75×10-5-640
Table 5  Tafel fitting data of three steels after 14 d immersion in SRB+IOB medium
Fig.5  Nyqusit, Bode and fitted curves of three steels after 14 d immersion in SRB+IOB medium
Fig.6  Equivalent circuit model for fitting EIS data
SteelsEquivalent circuit model

Rs

/ Ω·cm2

Yf

/ sn Ω-1·cm-2

nf

Rf

/ Ω·cm2

Ydl

/ sn Ω-1·cm-2

ndl

Rct

/ Ω·cm2

ZW

/ Ω-1

Without20#Fig.6a14.52.46×10-20.83258.53.46×10-20.866124-
industrial bactericideN80Fig.6a6.742.51×10-2148.023.93×10-21146-
groupP110Fig.6a13.77.55×10-3121.81.37×10-21118-
With20#Fig.6b5.692.94×10-2127.15.12×10-30.5381.41×1035.69
industrial bactericideN80Fig.6a7.712.56×10-30.8281.58×1033.96×10-30.992129-
groupP110Fig.6a3.129.07×10-3164.51.13×10-21111-
Table 6  EIS fitting data of three steels after 14 d immersion in SRB+IOB medium without industrial bactericide group with bndustrial bactericide group
Fig.7  Rp values of three steels after immersion for 14 d in SRB+IOB media without and with industrial bactericides
1 Wang H T, Zhang F, Wang Y, et al. Analysis of microbial corrosion by sulfate-reducing bacteria in product oil pipeline [J]. Press. Vessel Technol., 2021, 38(4): 20
王海涛, 张 斐, 王 垚 等. 成品油输送管道硫酸盐还原菌腐蚀分析 [J]. 压力容器, 2021, 38(4): 20
2 Sun D X, Wu M, Xie F. Effect of sulfate-reducing bacteria and cathodic potential on stress corrosion cracking of X70 steel in sea-mud simulated solution [J]. Mater. Sci. Eng., 2018, 721A: 135
3 Liu H W, Chen C Y, Zhang Y X, et al. Research progress of microbial corrosion and protection in oil and gas fields [J]. Equip. Environ. Eng., 2020, 17(11): 1
刘宏伟, 陈翠颖, 张雨轩 等. 油气田微生物腐蚀与防护研究进展 [J]. 装备环境工程, 2020, 17(11): 1
4 Li H R, He M, Gong X J. Corrosion reasons of cooling water pipeline in power plant and corresponding measures [J]. Corros. Prot., 2021, 42(5): 85
李海荣, 何 睦, 巩小杰. 电厂冷却水碳钢管道腐蚀的原因及相应对策 [J]. 腐蚀与防护, 2021, 42(5): 85
5 Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfatereducing bacteria induced corrosion [J]. J. Chin. Soc. Corros. Prot., 2018, 38(1): 1
管 方, 翟晓凡, 段继周 等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38(1): 1
6 Shatirova M I, Movsumzade M M, Dzhafarova U S, et al. Amine-containing acetylene compounds of the norbornene series—promising biocides for use in petroleum production [J]. Pet. Chem., 2019, 59(2): 220
doi: 10.1134/S0965544119020166
7 Kolodkin-Gal I, Romero D, Cao S G, et al. D-Amino acids trigger biofilm disassembly [J]. Science, 2010, 328(5978): 627
doi: 10.1126/science.1188628 pmid: 20431016
8 Atlam F M, Al-mhyawi S R. Experimental, theoretical explorations and MD simulation of the inhibition efficiency of tyrosine on carbon steel in hydrochloric acid [J]. J. Mol. Struct., 2021, 1246: 131102
doi: 10.1016/j.molstruc.2021.131102
9 Xu D, Li Y, Gu T. A synergisticD-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm [J]. World J. Microbiol. Biotechnol., 2012, 28(10): 3067
doi: 10.1007/s11274-012-1116-0
10 Li Y C, Jia R, Al-Mahamedh H H, et al. Enhanced biocide mitigation of field biofilm consortia by a mixture of D-Amino acids [J]. Front. Microbiol., 2016, 7: 896
doi: 10.3389/fmicb.2016.00896 pmid: 27379039
11 Xu C M, Luo L H, Wang W Y, et al. Enhancing sterilization effect of bactericide by D-tyrosine to iron bacterial biofilm on carbon steel surface [J]. J. Chin. Soc. Corros. Prot., 2020, 40(1): 63
胥聪敏, 罗立辉, 王文渊 等. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究 [J]. 中国腐蚀与防护学报, 2020, 40(1): 63
doi: 10.11902/1005.4537.2019.222
12 Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
doi: 10.1016/j.corsci.2015.08.023
13 Li X, Shang D Z, Li Z M, et al. SRB corrosion behavior of L245 pipeline steel with different cathode polarization potential [J]. Surf. Technol., 2022, 51(7): 207
李 鑫, 尚东芝, 李子墨 等. 不同阴极极化条件对L245的SRB腐蚀行为影响 [J]. 表面技术, 2022, 51(7): 207
14 Song Y, Chen S G. Effect of temperature on corrosion behavior of copper-nickel alloys by sulphate-reducing bacteria in anaerobic environment [J]. Surf. Technol., 2022, 51(3): 95
宋 翼, 陈守刚. 温度对厌氧环境中硫酸盐还原菌所致铜镍合金腐蚀行为的影响 [J]. 表面技术, 2022, 51(3): 95
15 Xu J N. Research on corrosion and scaling mechanism and protective measures of high temperature sewage pipeline in a block [D]. Chongqing: Chongqing University of Science & Technology, 2021
许俊南. 某气田A区块高温污水管道腐蚀结垢机理及防护措施研究 [D]. 重庆: 重庆科技学院, 2021
16 Zhang D F, Cui L B, Liu Y P. Study on forming process of anodized film of magnesium alloy by electrochemical impedance spectroscopy [J]. Rare Met. Mater. Eng., 2012, 41(7): 1181
张丁非, 崔立波, 刘渝萍. 镁合金阳极氧化膜成膜过程的交流阻抗谱研究 [J]. 稀有金属材料与工程, 2012, 41(7): 1181
17 Xu J, Jia R, Yang D Q, et al. Effects of D-Phenylalanine as a biocide enhancer of THPS against the microbiologically influenced corrosion of C1018 carbon steel [J]. J. Mater. Sci. Technol., 2019, 35(1): 109
doi: 10.1016/j.jmst.2018.09.011
18 Cui L Y, Liu Z Y, Hu P, et al. Laboratory investigation of microbiologically influenced corrosion of X80 pipeline steel by sulfate-reducing bacteria [J]. J. Mater. Eng. Perform., 2021, 30(10): 7584
doi: 10.1007/s11665-021-05974-z
19 Yu H B, Chen X, Liu Q P, et al. Anti microbiological corrosion performance of Cu-containing antibacterial pipeline steel [J]. Corros. Prot., 2020, 41(3): 10
于浩波, 陈 旭, 刘乔平 等. 含Cu抗菌管线钢的抑制微生物腐蚀性能 [J]. 腐蚀与防护, 2020, 41(3): 10
[1] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
[2] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[3] YUAN Qiangqiang, WANG Zhigang, JIANG Yongfang, ZHANG Yinghui, HUANG Ankang, YE Jieyun. Effect of Warm-rolled Temperature on Microstructure and Texture in Cr-Ti-B Low Carbon Steel[J]. 材料研究学报, 2022, 36(2): 81-89.
[4] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[7] GUO Tieming, XU Xiujie, ZHANG Yanwen, SONG Zhitao, DONG Zhilin, JIN Yuhua. Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt[J]. 材料研究学报, 2020, 34(6): 434-442.
[8] DUAN Tigang, HUANG Guosheng, MA Li, PENG Wenshan, ZHANG Wei, XU Likun, LIN Zhifeng, HE Hua, BI Tieman. Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel[J]. 材料研究学报, 2020, 34(10): 777-783.
[9] Kunmao Li,Jing LIU,Xiaoyan ZHANG,Hong LI,Yan DAI. Corrosion Behavior of Carburized Ti6Al4V Ti-alloy in HF Solution[J]. 材料研究学报, 2019, 33(7): 543-551.
[10] XU Long,LIU Fuchun,HAN En-Hou. Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating[J]. 材料研究学报, 2019, 33(10): 776-784.
[11] Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment[J]. 材料研究学报, 2018, 32(7): 533-540.
[12] Luhai ZHOU, Xicheng WEI, Chunyan WANG, Jun LU, Wurong WANG. Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel[J]. 材料研究学报, 2017, 31(11): 833-838.
[13] Ningning CHEN, Yanhua WANG, Lian ZHONG, Peipei YANG, Jia WANG. Anticorrosion Performance of Super-Hydrophobic Complex Film of Graphene/stearic Acid on AZ91 Mg-alloy[J]. 材料研究学报, 2017, 31(10): 751-757.
[14] Xiaodong SUN,Gang LIU,Longyang LI,Eryong LIU,Wencong LU,Zhixiang ZENG,Xuedong WU. Preparation and Properties of Superhydrophobizted Sprayed Zn-Al Coating[J]. 材料研究学报, 2015, 29(7): 523-528.
[15] Yi XIONG,Pengyan LI,Lufei CHEN,Yan LU,Junbei WANG,Fengzhang REN. Microstructure and Mechanical Properties of Laser Shocked an Ultra-fine Grained High Carbon Steel[J]. 材料研究学报, 2015, 29(6): 469-474.
No Suggested Reading articles found!