Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (10): 777-783    DOI: 10.11901/1005.3093.2020.134
ARTICLES Current Issue | Archive | Adv Search |
Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel
DUAN Tigang1(), HUANG Guosheng1, MA Li1, PENG Wenshan1, ZHANG Wei2, XU Likun1, LIN Zhifeng1, HE Hua3, BI Tieman3
1. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2. Center of Public Employment and Talent Service of Yantai, Yantai 264003, China
3. Dalian Shipbuilding Industry Co. , LTD, Dalian 116001, China
Cite this article: 

DUAN Tigang, HUANG Guosheng, MA Li, PENG Wenshan, ZHANG Wei, XU Likun, LIN Zhifeng, HE Hua, BI Tieman. Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel. Chinese Journal of Materials Research, 2020, 34(10): 777-783.

Download:  HTML  PDF(10178KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Combining the advantages of organic coating with self-healing ability and alloy plating, a composite coating Cap(T+Y)/ Ni-Co was prepared on the Q235 substrate in order to improve the anti-corrosion ability and extend the service time of the coated steel. At first the Ni-Co alloy plating was electro-deposited on Q235 carbon steel, and subsequently, the two-component microcapsules containing organic coating was applied on the Ni-Co/Q235 to acquire a composite coating. Results of SEM observation and thermogravimetry analysis show that the diameter of microcapsules is about 3 μm with a coverage up to 49%. Besides, results of neutral salt spray tests and localized electrochemical tests show that the composite coating presents a well integrality after undergoing 380 h salt spray test. The anticorrosive composite coating has satisfactory self-healing activity and long-term protectiveness on the Q235 metal matrixes.

Key words:  material failure and protection      self-healing coating      microcapsule      Ni-Co alloy plating     
Received:  23 April 2020     
ZTFLH:  O648  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.134     OR     https://www.cjmr.org/EN/Y2020/V34/I10/777

Fig.1  SEM image of Cap (T + Y)
Fig.2  Thermogravimetric curves in nitrogen atmosphere (a) weight loss and temperature curves; (b) DTG curves of UF、T、Y、Cap (T) and Cap (T+Y)
Fig.3  Images of Ni-Co alloy coating (a), scratched N-C-SR (b) and complete N-C-SR under neutral salt spray (c)
Fig.4  Result of N-C-SR self-repairing process under micro-electrochemical test
Fig.5  Self-repairing mechanism model of N-C-SR
[1] Han E, Chen J, Su Y, et al. Corrosion protection techniques of marine engineering structure and ship equipment—current status and future trend[J]. Mater. Chin., 2014, (33): 65
韩恩厚, 陈建敏, 宿彦京等. 海洋工程结构与船舶的腐蚀防护—现状与趋势 [J]. 中国材料进展, 2014, (33): 65
[2] Sander G, Tan J, Balan P, et al. Corrosion of additively manufactured alloys: a review. Corros., 2018, 74(12): 1318
[3] Lin J, Li W, Che K, et al. Research progress in marine engineering of anticorrosive coatings [J]. Mod Paint Finishing, 2018, 21(9): 7
林静, 李文婷, 车凯圆等. 防腐涂层在海洋工程中的研究进展 [J]. 现代涂料与涂装, 2018, 21(9): 7
[4] Shi H, Liu F, Wang Z, et al. Research progress of corrosion-resisting paints for marine application [J]. Corros. Sci. Pro. Technol., 2010, 22(1): 43
史洪微, 刘福春, 王震宇等. 海洋防腐涂料的研究进展 [J]. 腐蚀科学与防护技术, 2010, 22(1): 43
[5] Pourhashem S, Ghasemy E, Rashidi A, et al. A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings [J]. J. Coat. Technol. Res., 2020, 17(1): 19
[6] Gao S, Liu M, Pang X, et al. Fabrication and properties of super-hydrophobic composite coatings [J]. Chin. J. Mater. Res., 2018, 32(7): 502
高硕洪, 刘敏, 庞晓军等. 超疏水复合涂层的制备和性能研究 [J]. 材料研究学报, 2018, 32(7): 502
[7] Guo Q, Chen H. The protective mechanism and evaluating methods of anticorrosion coatings [J]. Synthetic. Mater. Aging. Appl., 2003, 32(04): 36
郭清泉, 陈焕钦. 金属腐蚀与涂层防护 [J]. 合成材料老化与应用, 2003, 32(04): 36
[8] Lv P, Li H, Huang W. New progress of the research on organic protective coatings [J]. Mater. Rev., 2011, 25(13): 83
吕平, 李华灵, 黄微波. 有机防护涂层老化研究进展 [J]. 材料导报, 2011, 25(13): 83
[9] Li H, Cui Y, Wang Q, et al. Advances in self-healing coating materials [J]. Polymer Mater. Sci. Eng., 2016, 32(10): 177
李海燕, 崔业翔, 王晴等. 自修复涂层材料研究进展 [J]. 高分子材料科学与工程, 2016, 32(10): 177
[10] Pan M, Wang L, Ding X, et al. The research progress of self-healing anti-corrosion coatings [J]. Mater. Chin., 2018, 37(1): 19
潘梦秋, 王伦滔, 丁璇等. 自修复防腐涂层研究进展 [J]. 中国材料进展, 2018, 37(1): 19
[11] Zhang Y, Fan W, Zhang T, et al. Review of intelligent self-healing coatings [J]. Chin. J. Corros. Pro., 2019, 39(4): 299
张勇, 樊伟杰, 张泰峰等. 涂层自修复技术研究进展 [J]. 中国腐蚀与防护学报, 2019, 39(4): 299
[12] An S, Lee W M, Yarin A, et al. A review on corrosion-protective extrinsic self-healing: Comparison of microcapsule-based systems and those based on core-shell vascular networks [J]. Chem. Eng. J., 2018, 344: 206
[13] Leal D A, Riegel-Vidotti I C, Ferreira M G S, et al. Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection [J]. Corros. Sci., 2018, 130: 56
[14] Wang X, Jin T, Wang H, et al. Preparation and properties of poly (urea-formaldehyde) microcapsules containing polysulfide sealant [J]. Chin. J. Mater. Res., 2018, 32(10): 730
王璇, 金涛, 王浩伟等. 脲醛树脂包覆聚硫密封剂微胶囊的制备和性能 [J]. 材料研究学报, 2018, 32(10): 730
[15] Hughes A E, Cole I S, Muster T H, et al. Designing green, self-healing coatings for metal protection [J]. NPG Asia Mater., 2010, 2(4): 143
[16] Yabuki A, Sakai M. Self-healing coatings of inorganic particles using a pH-sensitive organic agent [J]. Corros. Sci., 2011, 53(2): 829
[17] Wang X, Zhang X, Li F, et al. Research progress on self-healing anticorrosion coating [J]. J. Funct. Mater., 2012, 43(19): 2584
王晓岗, 张星, 李原芃等. 自修复功能防腐涂膜研究进展 [J]. 功能材料, 2012, 43(19): 2584
[18] Shi X, Song Y, Cai Z, et al. The influence of microcapsules with a partially filled structure on the damping properties of an epoxy resin [J]. New J. Chem., 2018, 42(14): 12119
[19] Zhou X, Li W, Zhu L, et al. Polymer–silica hybrid self-healing nano/microcapsules with enhanced thermal and mechanical stability [J]. RSC Adv., 2019, 9(4): 1782
[20] Wazarkar K, Patil D, Rane A V, et al. Microencapsulation: an emerging technique in modern coating industry [J]. RSC Adv., 2016, 6(108): 106964
[21] Hia I L, Chan E-S, Chai S-P, et al. A novel repeated self-healing epoxy composite with alginate multicore microcapsules [J]. J. Mater. Chem. A, 2018, 6(18): 8470
[22] Lang S, Zhou Q. Synthesis and characterization of poly(urea-formaldehyde) microcapsules containing linseed oil for self-healing coating development [J]. Prog. Org. Coat., 2017, 105: 99
[23] Huang M, Yang J. Facile microencapsulation of HDI for self-healing anticorrosion coatings [J]. J. Mater. Chem., 2011, 21(30): 11123
[24] Qiao L, Xue Y, Zhang Q. Synthesis and characterization of phenol-formaldehyde microcapsules for self-healing coatings [J]. J. Mater Sci, 2018, 53(2): 1035
[25] Li K, Li H, Cui Y, et al. Dual-functional coatings with self-lubricating and self-healing properties by combining poly(urea-formaldehyde)/SiO2 hybrid microcapsules containing linseed oil [J]. Ind. Eng. Chem. Res., 2019, 58(48): 22032
doi: 10.1021/acs.iecr.9b04736
[26] Díez-García I, Eceiza A, Tercjak A. Self-healable nanocomposites with enhanced thermal stability by incorporation of TiO2 nanoparticles to waterborne poly(urethane-urea) matrices based on amphiphilic triblock copolymers [J]. J. Phys. Chem. C, 2019, 123(34): 21290
doi: 10.1021/acs.jpcc.9b06184
[27] Shchukina E, Wang H, Shchukin D G. Nanocontainer-based self-healing coatings: current progress and future perspectives [J]. Chem. Comm., 2019, 55(27): 3859
doi: 10.1039/c8cc09982k pmid: 30895976
[28] Snihrova D, Lamaka S V, Montemor M F. "SMART" protective ability of water based epoxy coatings loaded with CaCO3 microbeads impregnated with corrosion inhibitors applied on AA2024 substrates [J]. Electrochim. Acta, 2012, 83: 439
[29] Ma X, Xu L, Wang W, et al. Synthesis and characterisation of composite nanoparticles of mesoporous silica loaded with inhibitor for corrosion protection of Cu-Zn alloy [J]. Corros. Sci., 2017, 120: 139
[30] Lamaka S V, Zheludkevich M L, Yasakau K A, et al. High effective organic corrosion inhibitors for 2024 aluminum alloy [J]. Electrochim. Acta, 2007, 52(25): 7231
[31] Yu S, Jia R, Zhang H, et al. Effect of (Gd, Y) containing-phases on local corrosion of aged GW103K alloy [J]. Chin. J. Mater. Res., 2019, 33(3): 199
于爽, 贾瑞灵, 张函等. (Gd, Y)相对GW103K时效合金局部腐蚀的影响 [J]. 材料研究学报, 2019, 33(3): 199
[32] Lee S J, Hong A, Kim I H, et al. Surface potential measurements of a polymer film following primary ion gun irradiation for ToF-SIMS analysis of insulator using a Kelvin probe and the observation of effects from the vacuum gauge [J]. Appl. Surf. Sci., 2020, 525: 146561
[1] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[2] GUO Tieming, XU Xiujie, ZHANG Yanwen, SONG Zhitao, DONG Zhilin, JIN Yuhua. Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt[J]. 材料研究学报, 2020, 34(6): 434-442.
[3] WANG Xingang,WANG Xingjing,XIA Long,XU Wei. Wave-Absorption Properties of Epoxy /Ethyl Cellulose Microcapsule Modified by Carbonyl Iron Powder[J]. 材料研究学报, 2019, 33(11): 824-830.
[4] XU Long,LIU Fuchun,HAN En-Hou. Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating[J]. 材料研究学报, 2019, 33(10): 776-784.
[5] Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment[J]. 材料研究学报, 2018, 32(7): 533-540.
[6] Xuan WANG, Tao JIN, Haowei WANG, Shengzhi LIAO, Huaiyu YANG. Preparation and Properties of Poly (urea-formaldehyde) Microcapsules Containing Polysulfide Sealant[J]. 材料研究学报, 2018, 32(10): 730-736.
[7] Luhai ZHOU, Xicheng WEI, Chunyan WANG, Jun LU, Wurong WANG. Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel[J]. 材料研究学报, 2017, 31(11): 833-838.
[8] Xiaoqiu SONG,Yuping DUAN. Preparation and Characterization of Totally Encapsulated Microcapsules of Jasmine Fragrance[J]. 材料研究学报, 2017, 31(1): 27-31.
[9] Yueling GUO,En-Hou HAN,Jianqiu WANG. Short-term Oxidation Behavior of Domestic Forged and Solution Annealed 316LN Stainless Steel in High Temperature Pressurized Water[J]. 材料研究学报, 2015, 29(6): 401-409.
[10] JIA Zhijun DU Cuiwei LIU Zhiyong GAO Jin LI Xiaogang. Effect of pH on the Corrosion and Electrochemical Behavior of 3Cr Steel in CO2 Saturated NaCl Solution[J]. 材料研究学报, 2011, 25(1): 39-44.
[11] HU Jianqing ZHENG Zhixian ZHU Haijun TU Weiping WANG Feng. Synthesis and Characterization of Polyfunctional Aziridine/Polyester Microcapsules by W/O/W Multiple Emulsion–solvent Evaporation[J]. 材料研究学报, 2010, 24(6): 619-624.
[12] GU Xunlei SHAN Yuqiao LIU Changsheng YU Xiaozhong. Research of magnetron sputtered Al–Mg alloy coatings on high-speed electro-galvanizing steel[J]. 材料研究学报, 2009, 23(5): 529-533.
[13] CAO Genting WANG Zhengke HU Qiaoling LIU Junqi WANG Youxiang. Preparation and embedding–releasing behavior of polyelectrolyte microcapsule[J]. 材料研究学报, 2009, 23(2): 165-170.
[14] . Preparation and performance of green encapsulated electrophoretic ink[J]. 材料研究学报, 2004, 18(1): 46-46.
No Suggested Reading articles found!