Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (2): 145-151    DOI: 10.11901/1005.3093.2021.549
ARTICLES Current Issue | Archive | Adv Search |
Investigation on Thermo-mechanical Fatigue Behavior of GH4169 Alloy
QIAN Chunhua(), CUI Haitao, WEN Weidong
College of Energy and Power Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
Cite this article: 

QIAN Chunhua, CUI Haitao, WEN Weidong. Investigation on Thermo-mechanical Fatigue Behavior of GH4169 Alloy. Chinese Journal of Materials Research, 2023, 37(2): 145-151.

Download:  HTML  PDF(9314KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The thermo-mechanical fatigue behavior of GH4169 alloy was investigated via MTS809 fatigue testing machine by applied multiple test loads at different temperature range. It is found that the hysteresis loops of GH4169 alloy have obvious asymmetry in tension and compression under thermo-mechanical condition. The material bears compressive stress when the mechanical strain amplitude in phase, whilst tensile stress for out of phase. The tensile stress is the main cause affecting the fatigue life. The average stress relaxation occurs at higher strain amplitude. In the high temperature half cycle, the alloy softens first and then becomes stable. In the low temperature half cycle, the alloy tends to be stable.

Key words:  metallic materials      thermo-mechanical fatigue      GH4169      cyclic stress-strain characteristics      cyclic stress response     
Received:  22 September 2021     
ZTFLH:  TB 302.3  
About author:  QIAN Chunhua, Tel: 15261896806, E-mail: nuaaqch@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.549     OR     https://www.cjmr.org/EN/Y2023/V37/I2/145

CCrMoAlTiNbFeSiBPMnSNi
0.0318.923.30.561.005.3517.60.070.0110.0220.020.002Bal.
Table 1  Chemical composition of GH4169 alloy (mass fraction, %)
Fig.1  Specimen size (unit: mm)
PhaseΔT/℃12Δεm/%T/sNΔεp/%σmax/MPaσmin/MPaσm/MPa
IP

200~

450

0.612527010.440406-600-194
0.717470.442504-723-219
0.81030.446580-866-286
0.9550.898636-736-100
IP

400~

650

0.61001650.105840-998-158
0.6125500.103735-937-202
0.6200270.068820-1030-210
OP

400~

650

0.551251960.471816-705111
0.61251700.3931118-868250
Table 2  Thermomechanical fatigue test results under different test conditions
Fig.2  Stable hysteresis curves under different test conditions (a) 200~450℃, T=125 s, IP; (b) 400~650℃, strain 0.6%, IP; (c) 400~650℃, T=125 s, OP
Fig.3  Hysteresis curves under different test conditions (a) 200~450℃, 0.8%, T=125 s, IP; (b) 200~450℃, 0.6%, T=125 s, IP; (c) 400~650℃, 0.6%, T=100 s, IP; (d) 400~650℃, 0.6%, T=125 s, OP
Fig.4  Cyclic stress response curves (a) 400~650℃, IP; (b) 400~650℃, OP
Fig.5  Strain-life relationship
Fig.6  Cycle-life relationship
Fig.7  Fracture morphology of GH4169 (IP, strain amplitude ±0.6%, 400~650℃), (a) fatigue source; (b) propagation zone; (c) final rupture regions
Fig.8  Fracture morphologies of GH4169 (OP, strain amplitude ±0.6%, 400~650℃) (a) fatigue source; (b) propagation zone; (c) final rupture regions
1 Zhuang J Y. Wrought Superalloy GH4169 [M]. Beijing: Metallurgical Industry Press, 2006
庄景云. 变形高温合金GH4169 [M]. 北京, 冶金工业出版社, 2006
2 Qi H. Development and technology of Inconel718 (GH4169) superalloy [J]. Materials Engineering, 2012, (8): 92
齐 欢. Inconel718(GH4169)高温合金的发展与工艺 [J]. 材料工程, 2012, (8): 92
3 Schafrik R, Ward D. Application of alloy 718 in GE aircraft engines: past, present and next five years [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warrendale: The Minerals, Metals & Materials Society, 2001: 1
4 Paulonis D, Schirra J. Alloy 718 at pratt & whitney-historical perspective and future challenges [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warrendale: The Minerals, Metals & Materials Society, 2001: 13
5 Barker J F. The initial years of alloy 718 [A]. Superalloys 718-Metallurya and Applications [C]. Warrendale: The Minerals, Metals & Materials Society, 1989: 269
6 Beck T, Pitz G, Lang K H, et al. Thermal-mechanical and isothermal fatigue of IN792 CC [J]. Mater. Sci. Eng. A, 1997, 234-236: 719
doi: 10.1016/S0921-5093(97)00281-5
7 Marcel R. Thermomechanical fatigue behavior of the intermetallic γ-TiAl alloy TNB-V5 with different microstructures [J]. Metallurgical and Materials Transaction A, 2010, 41(3): 717
doi: 10.1007/s11661-009-0119-4
8 Kraft S, Zauter R, Mughrabi H. Aspects of high-temperature low-cycle thermomechanical fatigue of a single crystal nickel-base superalloy [J]. Fatigue Fract. Eng. Mater. Struct., 1993, 16(2): 237
doi: 10.1111/j.1460-2695.1993.tb00755.x
9 Boismier D A, Sehitoglu H. Thermo-mechanical fatigue of Mar-M247 [J]. Part-life prediction. Trans. ASME J. Eng. Mater. Technol, 1990, 112(1): 68
10 Evans W J, Screech J E, Wllliams S J. Thermo-mechanical fatigue and fracture of INCO718 [J]. International Journal of Fatigue, 2008, (30): 67
11 Jacobsson L, Persson C, Melin S. Thermo-mechanical fatigue crack propagation experiments in Inconel 718 [J]. International Journal of Fatigue, 2009, (31): 318
12 Moverare J J, Gustafsson D. Hold-time effect on the thermo-mechanical fatigue crack growth be-haviour of Inconel 718 [J]. Materials Science and Engineering A, 2011, (528): 60
13 Schlesinger M, Seifert T, Preussner J. Experimental investigation of the time and temperature dependent growth of fatigue cracks in Inconel 718 and mechanism based lifetime prediction [J]. International Journal of Fatigue, 2017, (99): 42
14 Zhang G D, Su B. Thermomechanical fatigue properties and life prediction of IC10 alloy [J]. Chinese Journal of Nonferrous Metals, 2009, 19(1): 62
张国栋, 苏 彬. IC10合金热机械疲劳性能与寿命预测 [J]. 中国有色金属学报, 2009, 19(1): 62
15 He K, Zhou J. Thermal mechanical fatigue properties of 316LN stainless steel for nuclear power [J]. Nuclear Power Engineering, 2016, (4): 48
何 琨, 周 军. 核电用316LN不锈钢的热机械疲劳性能研究 [J]. 核动力工程, 2016, (4): 48
16 Liu F, Ai S H. Study on thermomechanical fatigue behavior of cast nickel base superalloy K417 [J]. Acta Metallurgica Sinica, 2001, 37(3): 367
刘 峰, 艾素华. K417铸造镍基高温合金热机械疲劳行为的研究 [J]. 金属学报, 2001, 37(3): 367
17 Wang J G, Xu S P. Effect of heating rate on thermomechanical fatigue properties [J]. Journal of Beijing University of Science and Technology, 2001, 23(s): 45
王建国, 徐世平. 升温速率对热机械疲劳性能的影响 [J]. 北京科技大学学报, 2001, 23(): 45
18 Wang Y C. Study on thermomechanical fatigue behavior and micromechanism of nickel base superalloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2004
王跃臣. 镍基高温合金热机械疲劳行为及微观机制研究 [D]. 沈阳: 中国科学院金属研究所, 2004
19 Deng W K, Xu J H, Jiang L. Thermomechanical fatigue properties of IN718 nickel base superalloy [J]. Chinese Journal of Nonferrous Metals, 2019
邓文凯, 徐睛昊, 江 亮. IN718镍基高温合金的热机械疲劳性能 [J]. 中国有色金属学报, 2019
20 Xiao L, Chen D L, Chaturvedi M C. Shearing of γ″ precipitates and formation of planar slip bands in Inconel 718 during cyclic deformation [J]. Scripta Materialia, 2005, 52(7): 603
doi: 10.1016/j.scriptamat.2004.11.023
21 An J L. Effect of long term aging on microstructure evolution and low cycle fatigue behavior of GH4169 alloy [J]. Acta Metallurgica Sinica, 2015, (7): 835
安金岚. 长期时效对GH4169合金组织演化及低周疲劳行为的影响 [J]. 金属学报, 2015, (7): 835
22 Prakash D G L, Walsh M J, Maclachlan D, et al. Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation [J]. International Journal of Fatigue, 2009, 31(11): 1966
doi: 10.1016/j.ijfatigue.2009.01.023
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!