|
|
Investigation on Thermo-mechanical Fatigue Behavior of GH4169 Alloy |
QIAN Chunhua( ), CUI Haitao, WEN Weidong |
College of Energy and Power Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China |
|
Cite this article:
QIAN Chunhua, CUI Haitao, WEN Weidong. Investigation on Thermo-mechanical Fatigue Behavior of GH4169 Alloy. Chinese Journal of Materials Research, 2023, 37(2): 145-151.
|
Abstract The thermo-mechanical fatigue behavior of GH4169 alloy was investigated via MTS809 fatigue testing machine by applied multiple test loads at different temperature range. It is found that the hysteresis loops of GH4169 alloy have obvious asymmetry in tension and compression under thermo-mechanical condition. The material bears compressive stress when the mechanical strain amplitude in phase, whilst tensile stress for out of phase. The tensile stress is the main cause affecting the fatigue life. The average stress relaxation occurs at higher strain amplitude. In the high temperature half cycle, the alloy softens first and then becomes stable. In the low temperature half cycle, the alloy tends to be stable.
|
Received: 22 September 2021
|
|
About author: QIAN Chunhua, Tel: 15261896806, E-mail: nuaaqch@163.com
|
1 |
Zhuang J Y. Wrought Superalloy GH4169 [M]. Beijing: Metallurgical Industry Press, 2006
|
|
庄景云. 变形高温合金GH4169 [M]. 北京, 冶金工业出版社, 2006
|
2 |
Qi H. Development and technology of Inconel718 (GH4169) superalloy [J]. Materials Engineering, 2012, (8): 92
|
|
齐 欢. Inconel718(GH4169)高温合金的发展与工艺 [J]. 材料工程, 2012, (8): 92
|
3 |
Schafrik R, Ward D. Application of alloy 718 in GE aircraft engines: past, present and next five years [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warrendale: The Minerals, Metals & Materials Society, 2001: 1
|
4 |
Paulonis D, Schirra J. Alloy 718 at pratt & whitney-historical perspective and future challenges [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warrendale: The Minerals, Metals & Materials Society, 2001: 13
|
5 |
Barker J F. The initial years of alloy 718 [A]. Superalloys 718-Metallurya and Applications [C]. Warrendale: The Minerals, Metals & Materials Society, 1989: 269
|
6 |
Beck T, Pitz G, Lang K H, et al. Thermal-mechanical and isothermal fatigue of IN792 CC [J]. Mater. Sci. Eng. A, 1997, 234-236: 719
doi: 10.1016/S0921-5093(97)00281-5
|
7 |
Marcel R. Thermomechanical fatigue behavior of the intermetallic γ-TiAl alloy TNB-V5 with different microstructures [J]. Metallurgical and Materials Transaction A, 2010, 41(3): 717
doi: 10.1007/s11661-009-0119-4
|
8 |
Kraft S, Zauter R, Mughrabi H. Aspects of high-temperature low-cycle thermomechanical fatigue of a single crystal nickel-base superalloy [J]. Fatigue Fract. Eng. Mater. Struct., 1993, 16(2): 237
doi: 10.1111/j.1460-2695.1993.tb00755.x
|
9 |
Boismier D A, Sehitoglu H. Thermo-mechanical fatigue of Mar-M247 [J]. Part-life prediction. Trans. ASME J. Eng. Mater. Technol, 1990, 112(1): 68
|
10 |
Evans W J, Screech J E, Wllliams S J. Thermo-mechanical fatigue and fracture of INCO718 [J]. International Journal of Fatigue, 2008, (30): 67
|
11 |
Jacobsson L, Persson C, Melin S. Thermo-mechanical fatigue crack propagation experiments in Inconel 718 [J]. International Journal of Fatigue, 2009, (31): 318
|
12 |
Moverare J J, Gustafsson D. Hold-time effect on the thermo-mechanical fatigue crack growth be-haviour of Inconel 718 [J]. Materials Science and Engineering A, 2011, (528): 60
|
13 |
Schlesinger M, Seifert T, Preussner J. Experimental investigation of the time and temperature dependent growth of fatigue cracks in Inconel 718 and mechanism based lifetime prediction [J]. International Journal of Fatigue, 2017, (99): 42
|
14 |
Zhang G D, Su B. Thermomechanical fatigue properties and life prediction of IC10 alloy [J]. Chinese Journal of Nonferrous Metals, 2009, 19(1): 62
|
|
张国栋, 苏 彬. IC10合金热机械疲劳性能与寿命预测 [J]. 中国有色金属学报, 2009, 19(1): 62
|
15 |
He K, Zhou J. Thermal mechanical fatigue properties of 316LN stainless steel for nuclear power [J]. Nuclear Power Engineering, 2016, (4): 48
|
|
何 琨, 周 军. 核电用316LN不锈钢的热机械疲劳性能研究 [J]. 核动力工程, 2016, (4): 48
|
16 |
Liu F, Ai S H. Study on thermomechanical fatigue behavior of cast nickel base superalloy K417 [J]. Acta Metallurgica Sinica, 2001, 37(3): 367
|
|
刘 峰, 艾素华. K417铸造镍基高温合金热机械疲劳行为的研究 [J]. 金属学报, 2001, 37(3): 367
|
17 |
Wang J G, Xu S P. Effect of heating rate on thermomechanical fatigue properties [J]. Journal of Beijing University of Science and Technology, 2001, 23(s): 45
|
|
王建国, 徐世平. 升温速率对热机械疲劳性能的影响 [J]. 北京科技大学学报, 2001, 23(): 45
|
18 |
Wang Y C. Study on thermomechanical fatigue behavior and micromechanism of nickel base superalloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2004
|
|
王跃臣. 镍基高温合金热机械疲劳行为及微观机制研究 [D]. 沈阳: 中国科学院金属研究所, 2004
|
19 |
Deng W K, Xu J H, Jiang L. Thermomechanical fatigue properties of IN718 nickel base superalloy [J]. Chinese Journal of Nonferrous Metals, 2019
|
|
邓文凯, 徐睛昊, 江 亮. IN718镍基高温合金的热机械疲劳性能 [J]. 中国有色金属学报, 2019
|
20 |
Xiao L, Chen D L, Chaturvedi M C. Shearing of γ″ precipitates and formation of planar slip bands in Inconel 718 during cyclic deformation [J]. Scripta Materialia, 2005, 52(7): 603
doi: 10.1016/j.scriptamat.2004.11.023
|
21 |
An J L. Effect of long term aging on microstructure evolution and low cycle fatigue behavior of GH4169 alloy [J]. Acta Metallurgica Sinica, 2015, (7): 835
|
|
安金岚. 长期时效对GH4169合金组织演化及低周疲劳行为的影响 [J]. 金属学报, 2015, (7): 835
|
22 |
Prakash D G L, Walsh M J, Maclachlan D, et al. Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation [J]. International Journal of Fatigue, 2009, 31(11): 1966
doi: 10.1016/j.ijfatigue.2009.01.023
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|