Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (9): 660-666    DOI: 10.11901/1005.3093.2021.225
ARTICLES Current Issue | Archive | Adv Search |
Mechanism of Improving Low Temperature Impact Toughness of 09MnNi Vessel Steel
NING Bo1, LI Zhichao1(), WU Huibin1, ZHANG Bingjun2, HUANG Manli1, DING Chao1
1.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Nanjing Iron and Steel Co., Ltd., Nanjing 210035, China
Cite this article: 

NING Bo, LI Zhichao, WU Huibin, ZHANG Bingjun, HUANG Manli, DING Chao. Mechanism of Improving Low Temperature Impact Toughness of 09MnNi Vessel Steel. Chinese Journal of Materials Research, 2022, 36(9): 660-666.

Download:  HTML  PDF(14468KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The phase transition temperature of Ac1 and Ac3 of 09MnNiDR steel for typical vessel was measured by thermal expansion method, and based on this two new quenching processes were designed. The microstructure, texture and low temperature impact properties of the samples at 1/2 thickness of the plate were investigaed by means of SEM, EBSD and Charpy impact tester. The results show that: Ac1 and Ac3 of 09MnNiDR steel is 692.9℃ and 883.1℃ respectively; compared with the "quasi sub temperature quenching + tempering" or "quasi sub temperature quenching + sub temperature quenching + tempering" heat treatment process, the "pre quenching + quasi sub temperature quenching + tempering" heat treatment could improve the low temperature impact property of the samples at 1/2 thickness of 09MnNiDR steel plate greatly, and one reason of the impact property improvement is grain refinement, another reason is the random distribution of texture.

Key words:  metallic materials      vessel steel      quasi sub temperature quenching      impact property      texture      grain size     
Received:  15 April 2021     
ZTFLH:  TG156.31  
About author:  LI Zhichao, Tel: 13520064346, E-mail: lizhichao1225@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.225     OR     https://www.cjmr.org/EN/Y2022/V36/I9/660

SampleCSiMnNiFe
09MnNi0.09≤0.51.400.77balance
Table 1  Chemical composition of the steel (mass fraction, %)
Fig.1  Phase transformation point determination of 09MnNi steel
SampleThe first quenchingThe second quenchingTempering
A1880℃/600~610℃
A2900℃870℃
B1880℃810℃
B2900℃870℃
Table 2  Heat treatment process
Fig.2  Schematic plot of cutting samples
Fig.3  Metallographic image (a) A1; (b) A2; (c) B1; (d) B2
Fig.4  SEM image of impact fracture (a) A1, (b) A2, (c) B1, (d) B2
Fig.5  Orientation image of A1 (a), A2 (b), B1 (c), B2 (d) and the typical texture and distribution of φ2=45° ODF figure in cubic crystal system (e)
Sample

{100}

<001>

{100}

<011>

{011}

<100>

{112}

<111>

{111}

<112>

{111}

<110>

{011}

<211>

{112}

<110>

{110}

<110>

A17.316.083.1513.0015.8014.403.773.620.96
A25.615.524.0212.0013.009.518.604.695.86
B17.316.132.3214.7011.409.249.615.072.19
B26.583.803.3310.1012.008.099.375.933.83
Table 3  Statistics of typical texture percentage content (%)
Fig.6  Comparison of texture, texture content variance and impact absorbed energy in samples (a) Texture content of orientation image; (b) Comparison of texture content variance with impact absorbed energy
Fig.7  Grain boundary distribution of samples of A1 (a), A2 (b), B1 (c) and B2 (d)
Fig.8  Statistics of grain size for samples
Fig.9  Proportion of high and low angle boundary
1 Saeidi N, Ekrami A. Microstructure-toughness relationship in AISI4340 steel [J]. Defect Diffusion Forum, 2011: 110
2 Zeng D F, Lu L T, Gong Y H, et al. Optimization of strength and toughness of railway wheel steel by alloy design [J]. Mater. Des., 2016, 92: 998
doi: 10.1016/j.matdes.2015.12.096
3 Wang C F, Wang M Q, Shi J, et al. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel [J]. J. Mater. Sci. Technol., 2007, 23(5): 659
4 Zhao Y J, Ren X P, Yang W C, et al. Design of a low-alloy high-strength and high-toughness martensitic steel [J]. Int. J. Min. Met. Mater., 2013, 20(8): 733
doi: 10.1007/s12613-013-0791-7
5 Reveka V N, Nesterenko V M. Toughness of steel 09G2S at low temperatures in relation to cleanness of grain boundaries [J]. Met. Sci. Heat Treat., 1975, 17(5): 434
doi: 10.1007/BF00663227
6 Sato K. Improving the toughness of ultrahigh strength steel[D]. Berkeley: University of California, Berkeley. 2002
7 Singh R K, Singh A K, Prasad N E. Texture and mechanical property anisotropy in an Al-Mg-Si-Cu alloy [J]. Mat. Sci. Eng. A, 2000, 277(1-2): 114
doi: 10.1016/S0921-5093(99)00549-3
8 Shukla R, Ghosh S K, Chakrabarti D, et al. Microstructure, texture, property relationship in thermo-mechanically processed ultra-low carbon microalloyed steel for pipeline application [J]. Mat. Sci. Eng. A, 2013, 587(18): 201
doi: 10.1016/j.msea.2013.08.054
9 Cai H L, Mou J S, Hou Z Y. Microstructure, texture and property of interstitial-Free (IF) steel after ultra-fast annealing [J]. Adv. Mater. Res., 2015, 1120-1121:1003
10 Koh Y H, Park No J, Choi J H. Texture and corrosion property in the hopeite crystal coated steel [J]. Mater. Sci. Forum, 1998: 635
11 Feng Y L, Li S, Yin J Z, et al. Effect of normalizing on texture and deep-drawing property of 10Cr17 ferrite stainless steel [J]. Adv. Mater. Res., 2012, 418-420: 125
12 Nafisi S, Arafin M A, Collins L, et al. Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles [J]. Mat. Sci. Eng. A, 2012, 531: 2
doi: 10.1016/j.msea.2011.09.072
13 Yang X L, Xu Y B, Tan X D, et al. Relationships among crystallographic texture, fracture behavior and Charpy impact toughness in API X100 pipeline steel [J]. Mat. Sci. Eng. A, 2015, 641: 96
doi: 10.1016/j.msea.2015.06.029
14 Kang J, Li C N, Yuan G, et al. Improvement of strength and toughness for hot rolled low-carbon bainitic steel via grain refinement and crystallographic texture [J]. Mater. Lett., 2016, 175: 157
doi: 10.1016/j.matlet.2016.04.007
15 Ma J N, Wang R Z, Yang C F, et al. Effect of surface layer with ultrafine grains on crack arrestability of heavy plate [J]. Acta Metall. Sinica, 2017(05): 549
马江南, 王瑞珍, 杨才福 等. 中厚板表层超细晶对止裂性能的影响 [J]. 金属学报, 2017, (05): 549
16 Sen R, Ghosh M, Kaiser M S. Microstructure-texture-fracture toughness property correlation in annealed Al-6Mg alloy with minor scandium and zirconium additions [J]. Fatigue Fract. Eng. Mater. Struct., 2012, 35(11): 1071
doi: 10.1111/j.1460-2695.2012.01700.x
17 Romaniv O N, Tkach A N, Gladkii Y N, et al. Fracture toughness of steel with a martensite-ferrite structure [J]. Mater. Sci., 1978, 13(3): 254
doi: 10.1007/BF00716115
18 Du M X, Wang M J. Effect of microstructure on toughness of high strength bainitic steel [J]. Heat Treat. Met., 2015(4):40-44
杜民献, 王孟君. 显微组织对贝氏体高强度钢冲击性能的影响 [J]. 金属热处理, 2015, (4): 40
19 Zhang X L, Feng Y R, Zhuang C J, et al. Study on effective particle size of high grade pipeline steels and relationship between CVN [J]. J. Mater. Eng., 2008, (007): 1
张小立, 冯耀荣, 庄传晶 等. 高钢级管线钢中有效晶粒尺寸及与CVN关系研究 [J]. 材料工程, 2008, (007): 1
20 Li Z T, Chai F, Yang C F, et al. Effect of Quenching on Mechanical Property of Ultra-high Strength Marine Engineering Steel [J]. Chin. J. Mater. Res., 2018, 32(12): 11
李振团, 柴 锋, 杨才福 等. 淬火工艺对UHS海工钢力学性能的影响 [J]. 材料研究学报, 2018, 32(12): 11
21 Sa S Y, Wang P. Grain boundary characterization and its influence on fatigue crack initiation and propagation in Ti-15-3 sheet [J]. The Chinese Journal of Nonferrous Metals, 2010, 20: 429
撒世勇, 王 平. Ti-15-3板材中晶界特征及其对疲劳裂纹萌生与扩展的影响 [J]. 中国有色金属学报, 2010, 20: 429
22 Jiang J X, Wu H B, Liang J, et al. Microstructural characterization and impact toughness of a jackup rig rack steel treated by intercritical heat treatment [J]. Mat. Sci. Eng. A, 2013, 587(10): 359
doi: 10.1016/j.msea.2013.09.004
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!