Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (6): 425-434    DOI: 10.11901/1005.3093.2021.406
ARTICLES Current Issue | Archive | Adv Search |
Experiment and First-principles Calculation on Effect of Carbon Nanotubes Doping on Physical Parameters and Display Properties of Liquid Crystal
LIU Yu1, LIANG Zhiqi2, ZHAO Song1, CHANG Chunrui1()
1.College of Science, North China University of Science and Technology, Tangshan 063210, China
2.College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, China
Cite this article: 

LIU Yu, LIANG Zhiqi, ZHAO Song, CHANG Chunrui. Experiment and First-principles Calculation on Effect of Carbon Nanotubes Doping on Physical Parameters and Display Properties of Liquid Crystal. Chinese Journal of Materials Research, 2022, 36(6): 425-434.

Download:  HTML  PDF(1676KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A mixed liquid crystal was firstly prepared with liquid crystals 4-Cyano-4'-pentylbiphenyl (5CB) and 4-[trans-4-[(E)-1-propenyl] cyclohexyl] benzonitrile in a ratio of 5∶1 as raw material. Then the plain liquid crystal 5CB and the mixed liquid crystal were compounded with the pretreated carbon nanotubes (CNTS) respectively, which were characterized in terms of their photoelectric and dielectric properties. The results show that the addition of CNTS affects the threshold voltage and dielectric anisotropy of the liquid crystal systems, as a result, the dielectric anisotropy increases by 4.671%, and the flexural elastic constant also increases; The addition of CNTS also affects the response time and viscosity coefficient of the liquid crystal systems, while the viscosity coefficient decreases by 25.131%. The experimental results also show that the dielectric anisotropy of the mixed liquid crystal is higher than that of the plain liquid crystal 5CB, while the decrease of response time and viscosity is more obvious. The greater advantage of the mixed liquid crystal is that the doping of carbon nanotubes can result in significant improvement in the physical parameters and display performance of the composite system. At the same time, the theoretical research results show that the binding energies of carbon nanotubes and liquid crystal molecules are between those of liquid crystal molecule pairs and carbon nanotube pairs respectively, as a result, dipole moments may be induced by the asymmetric charge distribution of the liquid crystal molecules adsorbed on carbon nanotubes, which can well interpretate the fact that the doped carbon nanotubes can improve the dielectric anisotropy of liquid crystal materials, while reduce the response time.

Key words:  composite      threshold voltage      response time      dielectric anisotropy      density functional theory      interaction     
Received:  15 July 2021     
ZTFLH:  TB332  
Fund: Natural Science Foundation of Hebei Province(A2021209005);Provincial Department of Education Program of Hebei Province(QN2021118)
About author:  CHANG Chunrui, Tel: 18032513036, E-mail: changchunrui@ncst.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.406     OR     https://www.cjmr.org/EN/Y2022/V36/I6/425

Fig.1  Correlation diagram of experimental test and calculation parameters
Fig.2  Liquid crystal molecular structure
Fig.3  Impedance analyzer test system
Fig.4  Opto-electronic test system
Fig.5  Square wave like signal with a frequency of 1 kHz and a peak-to-peak value of 1.8 V
Fig.6  Scanning electron micrograph of carbon nanotubes (a) original CNTs, (b) pretreated CNTs
Fig.7  Capacitance-voltage curves of different LC/CNTs composite systems
Concentration

5CB/CNTs

Vth/V

Mixed LC/CNTs

Vth/V

0%0.68630.736
0.001%0.73020.7291
Amplification6.397%-0.9375%
0.005%0.71450.7425
Amplification4.109%0.8832%
Table 1  Threshold voltages of different LC/CNTs composite systems
Concentration

5CB/CNTs

Δε

Mixed LC/CNTs

Δε

0%11.4480057713.12442359
0.001%11.5503961813.19549275
Amplification0.894%0.542%
0.005%11.8745804113.73746503
Amplification3.726%4.671%
Table 2  Dielectric anisotropy of different LC/CNTs composite systems
Fig.8  Dielectric anisotropy curves of different LC/CNTs composites with doping concentration
Concentration

5CB/CNTs

k11/N

Mixed LC/CNTs

k11/N

0%4.837×10-126.378×10-12
0.001%5.525×10-126.293×10-12
0.005%5.438×10-126.794×10-12
Table 3  Splay elastic constants of different LC/CNTs composites
Fig.9  Comparison of normalized transmittance versus time curves of different LC/CNTs composites
Concentration

5CB/CNTs

τon/s

Mixed LC/CNTs

τon/s

0%0.15720.1392
0.001%0.12060.0952
0.005%0.09940.0996
Table 4  Rise time of different LC/CNTs composites
Concentration

5CB/CNTs

τoff/s

Mixed LC/CNTs

τoff/s

0%0.04160.034
0.001%0.03320.0258
0.005%0.03180.0304
Table 5  Fall time of different LC/CNTs composites
Fig.10  Response time of different LC/CNTs composites (a) Rise time; (b) Fall time
Concentration

5CB/CNTs

γ/Pa∙s

Mixed LC/CNTs

γ/Pa∙s

0%0.1380.1484
0.001%0.1250.111
Amplification-8.848%-25.131%
0.005%0.1180.141
Amplification-14.059%-4.751%
Table 6  Viscosity coefficient of different LC/CNTs composites
Fig.11  Curves of viscosity coefficient of different LC/CNTs composites with doping concentration
MoleculeTotal energy/kJ∙mol-1Binding energy /kJ∙mol-1
CNT-16020259.55-
5CB-1972813.646-
16CN-1772811.692-
CNT/CNT-32040766.04-246.928
CNT/5CB-17993178.59-105.393
CNT/16CN-17793154.91-83.667
5CB/5CB-3945693.537-66.244
16CN/16CN-3545638.782-15.399
5CB/16CN-3745694.349-105.393
Table 7  Total energy and binding energy of different systems
Fig.12  Stable model of interaction between carbon nanotubes and liquid crystal molecules. The label started by R refers to all six carbon atoms on the benzene or cyclohexane (a) CNT/5CB, (b) CNT/16CN
Atom

CNT/5CB

charge/e∙atom-1

CNT/16CN

charge/e∙atom-1

C10.0110.012
C2-0.009-0.011
C30.0030.006
C40.0170.025
N1-0.009-0.011
R10.002-0.008
R20.001-0.04
H10.0020.027
Table 8  Charge transfer of some atoms or structures in liquid crystal molecules and carbon nanotubes
1 Boruah B R. Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator [J]. American Journal of Physics, 2009, 77: 331
doi: 10.1119/1.3054349
2 Namkung J, Zou Y, Abu-Abed A, et al. Capacitive techniques to monitor of anchoring energy for liquid crystal sensors [J]. IEEE Sensors Journal, 2010, 10: 1479
doi: 10.1109/JSEN.2009.2038278
3 Galanis J, Nossal R, Losert W, et al. Nematic order in small systems: measuring the elastic and wall-anchoring constants in vibrofluidized granular rods [J]. Physical Review Letters, 2010, 105: 4
4 Sui Z M, Chen X, Wang L Y, et al. Study on the doping and interactions of metal nanoparticles in the lyotropic liquid crystals [J]. Acta Physico-Chimica Sinica, 2006, 22: 737
doi: 10.1016/S1872-1508(06)60030-2
5 Dierking I, Scalia G, Morales P. Liquid crystal-carbon nanotube dispersions [J]. Journal of Applied Physics, 2005, 97
6 Gorkunov M V, Osipov M A. Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles [J]. Soft Matter, 2011, 7: 4348
doi: 10.1039/c0sm01398f
7 Chang C R, Zhao Y, Liu Y, et al. Liquid crystallinity of carbon nanotubes [J]. Royal Society of Chemistry Advances, 2018, 8: 15780
8 Song W H, Kinloch I A, Windle A H. Nematic liquid crystallinity of multiwall carbon nanotubes [J]. Science, 2003, 302: 1363
doi: 10.1126/science.1089764
9 Guo Y Q, Li W J, Li X S, et al. Influences of nickel plated multi-walled carbon-nanotube on the electro-optical properties of nematic liquid crystal [J]. Nanotechnology, 2019, 30.
10 De Filpo G, Siprova S, Chidichimo G, et al. Alignment of single-walled carbon nanotubes in polymer dispersed liquid crystals [J]. Liquid Crystals, 2012, 39: 359
doi: 10.1080/02678292.2011.639908
11 Singh D, Singh U B, Pandey M B, et al. Electro-optic behaviour of nematic-swcnt nanocomposites under applied bias field [J]. Liquid Crystals, 2019, 46: 1389
doi: 10.1080/02678292.2019.1573329
12 Lagerwall J P F, Scalia G. Carbon nanotubes in liquid crystals [J]. Journal of Materials Chemistry, 2008, 18: 2890
doi: 10.1039/b802707b
13 Star A, Stoddart J F, Steuerman D, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes [J]. Angewandte Chemie International Edition, 2001, 40: 1721
doi: 10.1002/1521-3773(20010504)40:9<1721::AID-ANIE17210>3.0.CO;2-F
14 Song D H, Kim J W, Kim K H, et al. Ultrafast switching of randomly-aligned nematic liquid crystals [J]. Optics Express, 2012, 20: 11659
doi: 10.1364/OE.20.011659
15 Jakeman E, Raynes E P. Electro-optic response times in liquid crystals [J]. Physics Letters A, 1972, 39: 69
doi: 10.1016/0375-9601(72)90332-5
16 Tie W, Yang G H, Bhattacharyya S S, et al. Electric-field-induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal [J]. Journal of Physical Chemistry C, 2011, 115: 21652
doi: 10.1021/jp206961a
17 Peterson M S E, Georgiev G, Atherton T J, et al. Dielectric analysis of the interaction of nematic liquid crystals with carbon nanotubes [J]. Liquid Crystals, 2018, 45: 450
doi: 10.1080/02678292.2017.1346212
18 Ye W J, Yuan R, Dai Y Y, et al. Improvement of image sticking in liquid crystal display doped with gamma-Fe2O3 nanoparticles [J]. Nanomaterials, 2018, 8: 13
doi: 10.3390/nano8010013
19 Kaczmarek M, Dyadyusha A, Slussarenko S, et al. The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers [J]. Journal of Applied Physics, 2004, 96: 2616
doi: 10.1063/1.1778818
20 Zuo J M, Blaha P, Schwarz K. The theoretical charge density of silicon: experimental testing of exchange and correlation potentials [J]. Journal of Physics: Condensed Matter, 1997, 9: 7541
doi: 10.1088/0953-8984/9/36/004
21 Diao J J, Chang C R, Zhang Z M, et al. Reducing contact resistance of carbon nanotubes by Au doping [J]. Chinese Journal of Materials Research, 2017, 31(7): 511
刁加加, 常春蕊, 张志明 等. 金掺杂降低碳纳米管接触电阻的实验研究 [J]. 材料研究学报, 2017, 31(7): 511
doi: 10.11901/1005.3093.2016.394
22 Wang H M, He M S, Zhang Y Y. Carbon nanotube films: preparation and application in flexible electronics [J]. Acta Physico-Chimica Sinica, 2019, 35: 1207
doi: 10.3866/PKU.WHXB201811011
王灏珉, 何茂帅, 张莹莹. 碳纳米管薄膜的制备及其在柔性电子器件中的应用 [J]. 物理化学学报, 2019, 35: 1207
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!