Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (6): 416-424    DOI: 10.11901/1005.3093.2021.248
ARTICLES Current Issue | Archive | Adv Search |
Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent
HUANG Huan1, ZHANG Xuntao1, YANG Shangke1, XIAO Liuxin1, ZHANG Zhaoxin1, YAN Lei1, LIN Hailan1, BIAN Jun1(), CHEN Daiqiang2
1.College of Materials Science and Engineering, Xi-Hua University, Chengdu, Sichuan 610039, China
2.College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, Chin
Cite this article: 

HUANG Huan, ZHANG Xuntao, YANG Shangke, XIAO Liuxin, ZHANG Zhaoxin, YAN Lei, LIN Hailan, BIAN Jun, CHEN Daiqiang. Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent. Chinese Journal of Materials Research, 2022, 36(6): 416-424.

Download:  HTML  PDF(7361KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Firstly, a complex nucleating agent (GO-SB) was synthesized by hydrothermal method with graphene oxide (GO) and sodium benzoate (SB) as raw material, and then nanocomposites of nylon 6 (PA6) /GO-SB were prepared by melt blending method with PA6 as matrix and GO-SB as complex nucleating agent. The effect of the introducing GO and SB separately, and GO-SB simultaneously on the morphology, mechanical and thermal-property of PA6 based nanocomposites were investigated. The results show that there are electrostatic interaction and π-π conjugation between GO and SB, and the addition of SB can promote the formation of γ-crystals in PA6. GO-SB was uniformly dispersed in PA6 matrix as heterogeneous nucleating agent, which could induce the increase of crystallization temperature, crystallinity, and thermal deformation temperature of PA6 based nanocomposites. The tensile strength and impact strength of PA6/GO-SB (100/0.05/0.25 in mass fraction) nanocomposites are 69.9%, and 157.1% higher than those of pure PA6, respectively. The tensile strength, impact strength and elastic modulus of PA6/GO-SB (100/0.05/0.25) nanocomposites were increased by 13.6%, 186.4% and 52.6%, respectively, compared with those of PA6/GO-SB (100/0.3/0) nanocomposites. Compared with k=0.238 W/m·k of the pure PA6, the thermal conductivity k=0.536 W/m·k of PA6/GO-SB (100/0.3/0) nanocomposite is increased by 125.2%; while the thermal conductivity k=0.854 W/m·k of PA6/GO-SB (100/0.05/0.25) nanocomposites is increased by 258.8%.

Key words:  composite      Nylon 6 (PA6)      graphene oxide (GO)      sodium benzoate (Sb)      mechanical property      thermal conductivity     
Received:  16 April 2021     
ZTFLH:  TQ332  
Fund: Cooperation Project of Chunhui Plan of the Ministry of Education of China(Z2018088);Cooperation Project of Chunhui Plan of the Ministry of Education of China(Z2017070);Graduate Innovation Fund of Xi-hua University(SA2000002910);Interface Innovation Research Studio Project for College Students of Xi-hua University(2019-07);National Undergraduate Innovation and Entrepreneurship Training Program(202110623XXX);Sichuan Provincial First-Class Major Construction(RC2100001411);Sichuan Provincial First-Class Curriculum Construction Project(RC2100001374);Ideological and Political Curriculum Construction Project of Xihua University(RC2100001459)
About author:  BIAN Jun, Tel: 13880538676, E-mail: bianjun2003@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.248     OR     https://www.cjmr.org/EN/Y2022/V36/I6/416

SamplesTco/℃Tcp/℃Tce/℃Tmo/℃Tmp/℃Tme/℃ΔHm/J·g-1Xc/%ΔT/℃
P-G-Sb(100/0/0)155.5164.7177.2209.4223.3229.550.9122.1358.6
P-G-Sb(100/0.3/0)178.5185.6189.9210.2218.6230.653.9123.5133.0
P-G-Sb(100/0.25/0.05)177.8184.6188.9207.5221.4227.765.3928.5236.8
P-G-Sb(100/0.15/0.15)177.0184.3188.8207.2221.3228.057.6725.1537.0
P-G-Sb(100/0.05/0.25)178.5184.8189.2207.5220.8226.552.3722.8436.0
Table 1  DSC melt-crystallization parameters of PA6/GO-Sb nanocomposites
Fig.1  Preparation and reaction principle of GO-Sb composite nucleating agent
Fig.2  Schematic illustration of materials design (a) The aggregation state of pure PA6. (b) The increasing ordered area in PA6/GO nanocomposites due to the “heterogeneous nucleating effects” of GO. (c) The mechanism of the increasing ordered area and thermal conductivity paths of TPU/GO-Sb nanocomposites due to the better interfacial interactions and dispersion of GO-Sb compounding nucleator in the PA6 matrix
Fig.3  Infrared spectrum of filler (a) and PA6/GO-Sb nanocomposite (b)
Fig.4  XRD traces of PA6/GO-Sb nanocomposites
Fig.5  The FESEM images of pure PA6 and PA6/GO-Sb nanocomposites containing different nanofillers (a) P-G-Sb (100/0/0) nanocomposites, (b) P-G-Sb (100/0.3/0) nanocomposites, (c) P-G-Sb (100/0.25/0.05) nanocomposites, (d) P-G-Sb (100/0.05/0.25) nanocomposites
Fig.6  DSC curves of PA6/GO-Sb nanocomposites (a)-crystallization curves, (b)-melting curves
Samples

P-G-Sb

(100/0/0)

P-G-Sb

(100/0.3/0)

P-G-Sb

(100/0.25/0.05)

P-G-Sb

(100/0.2/0.1)

P-G-Sb

(100/0.15/0.15)

P-G-Sb

(100/0.1/0.2)

P-G-Sb

(100/0.05/0.25)

VST/℃204.6211.3209.0208.6208.5208.0208.3
Table 2  VST of pure PA6 and PA6/GO-Sb nanocomposites
Fig.7  Mechanical properties of pure PA6 and PA6/GO-Sb nanocomposites (a) Stress-strain curves, (b) Tensile strength, (c) Elastic modulus, (d) Impact strength
Fig.8  Thermal conductivity of PA6 and PA6/GO-Sb nanocomposites
1 O'Neill A, Bakirtzis D, Dixon D. Polyamide 6/graphene composites: the effect of in situ polymerization on the structure and properties of graphene oxide and reduced graphene oxide [J]. European Polymer Journal, 2014, 59(1): 353
doi: 10.1016/j.eurpolymj.2014.07.038
2 Pant H R, Pant B, Park C H, et al. RGO/Nylon-6 composite mat with unique structural features and electrical properties obtained from electrospinning and hrdrothermal process [J]. Fibers and Polymers, 2013, 14(6): 970
doi: 10.1007/s12221-013-0970-1
3 Binsbergen F L, Delange B G M. Heterogeneous nucleation in the crystallization of Polyolefin's: Part 2. Kineties of crystallization of nucleated Polypropylene [J]. Polymer, 1970, 11(4): 309
doi: 10.1016/0032-3861(70)90071-6
4 Beck H N, Ledbetter H D. DTA study of heterogeneous nucleation of crystallization in Polypropylene [J]. Journal of Applied Polymer Science, 1965, 9(6): 2131
doi: 10.1002/app.1965.070090610
5 Beek H N. Heterogeneous nucleating agents for Polypropylene crystallization [J]. Journal of Applied Polymer Science, 1967, 11(5): 673
doi: 10.1002/app.1967.070110505
6 Lu L Y, Zhu C S, H S Q. Research progress on the effect of nucleating agent on the structure and properties of nylon [J]. Application of Engineering Plastics, 2003, 31(5): 69
吕励耘, 朱诚身, 何素芹. 成核剂对尼龙结构与性能影响的研究进展 [J]. 工程塑料应用, 2003(05): 69
7 Lai D W, Li D X, Yang J, et al. Preparation and characterization of hyperbranched polyamide 6 modified by organic montmorillonite [J]. Journal of Composite Materials, 2016, 33 (8): 1663
8 Huang Z G, Zou X Y, Fang L C. Study on non isothermal crystallization behavior of nylon 6/kaolin composite [J]. Modern Plastic Processing and Application, 2010, 22(5): 40
黄兆阁, 邹晓燕, 方立翠. 尼龙6/高岭土复合材料的非等温结晶行为研究 [J]. 现代塑料加工应用, 2010, 22(05): 40
9 Chen X D, Chen G W. Effect of components on PA6/PP/Talcum Powder ternary composite [J]. Application of Engineering Plastics, 2018, 46(5): 33
陈晓东, 陈光伟. 组分对PA6/PP/滑石粉三元复合材料的影响 [J]. 工程塑料应用, 2018, 46(05): 33
10 Xu Q J, Wang S B, Chen F F, et al. Studies on the interfacial effect between nano-SiO2 and nylon 6 in nylon 6/SiO2 nanocomposites [J]. Nanomaterials and Nanotechnology, 2016, 6(1): 1
doi: 10.5772/62161
11 Dural Erem A, Ozcan G, Skrifvars M. Antibacterial activity of PA6/ZnO nanocomposite fibers [J]. Textile Research Journal, 2011, 81(16): 1638
doi: 10.1177/0040517511407380
12 Wu X F, Zhao Y K, Li X J, et al. Isothermal Crystallization Properties of Polyamide 6/Hexagonal Boron Nitride Nanocomposites [J]. Journal of Macromolecular Science Part B, 2018: 1
13 Zhang X X, Yu S C, Liu H H, et al. Preparation and characterization of conductive MWCNTs/PA6 composites [J]. Journal of Tianjin University of Technology, 2017, 036(003): 11
张兴祥, 于思聪, 刘海辉, 等. 导电性MWCNTs/PA6复合材料制备与性能表征 [J]. 天津工业大学学报, 2017, 36(03): 11
14 Hu X Y, Zheng Q, Gu T, et al. The effect of Ca3(Si3O9) content on the structure and properties of nylon 6 [J]. Polymer Materials Science and Engineering, 2017(2): 44
胡孝迎, 郑强, 辜婷, 等. Ca3(Si3O9)的含量对尼龙6结构与性能的影响 [J]. 高分子材料科学与工程, 2017, 33(02): 44
15 Song X Y, Wu S Z, Lu J R, et al. Study on the properties of polycarbonate/nylon 1010 solvent resistant alloy system [J]. Plastics Industry, 2009(07): 12
宋湘怡, 吴水珠, 卢家荣, 等. 聚碳酸酯/尼龙1010耐溶剂合金体系的性能研究 [J]. 塑料工业, 2009, 37(07): 12
16 Yao H M, Lin Z Y, Xiao F Y, et al. Preparation and characterization of PPEs/MC nylon 6 in situ composite [J]. Plastics Industry, 2009, (01): 13
姚辉梅, 林志勇, 肖凤英, 等. PPES/MC尼龙6原位复合材料的制备与表征 [J]. 塑料工业, 2009, 37(01): 13
17 Kobayashi D G, Hsieh Y T, Takahara A. Interphase structure of carbon fiber reinforced polyamide 6 revealed by microbeam X-ray diffraction with synchrotron radiation [J]. Polymer, 2016, 89: 54
18 Chen J, Hu J H, Zhang Y, et al. Synergistic Reinforcing Effects of PA6 Composites Filled with Talc and Glass Fiber [J]. Guangdong Chemical, 2018, 45(9): 33
陈 俊, 胡建华, 张译方 等. 滑石粉-玻纤协同增强尼龙复合材料 [J]. 广东化工, 2018, 45(09): 33
19 Zheng T, Xia W N, Guo J, et al. Preparation of flame-retardant polyamide 6 by incorporating MgO combined with g-C3N4 [J]. Polymers for Advanced Technologies, 2020, 31: 1963
doi: 10.1002/pat.4920
20 Kodal M, Erturk S, Sanli S, et al. Properties of talc/wollastonite/polyamide 6 hybrid composites [J]. Polymer Composites, 2015, 36(4): 739
doi: 10.1002/pc.22993
21 Zhang L, Yang J, Feng C, et al. Structure And Performance of Polyamide 6 Composites Reinforced By Glass Fiber Compounded With Nano-SiO2 or Carbon Nanotubes [J]. Acta Polymerica Sinica, 2010, (11): 1333
张 玲, 杨建民, 冯超伟. 表面复合纳米SiO2和碳纳米管玻璃纤维增强尼龙6的结构与性能 [J]. 高分子学报, 2010, (11): 1333
22 Guo M, Liu Y Q, Li J Q. Mechanical and crystallization properties of polyamide 6 modified with composite nucleating agents [J]. Synthetic Resin and Plastics, 2014, 31(01): 1
郭 敏, 刘轶群, 李晋庆 等. 复合成核剂改性PA 6的力学性能和结晶行为 [J]. 合成树脂及塑料, 2014, 31(01): 1
23 Meng H, Sui G X, Xie G Y, et al. Non-isothermal Crystallization Kinetics of Polyamide 6/Diamine modified MWNTs Nanocomposite [J]. Journal of Materials Science & Technology, 2009, 2: 3
24 Kazemi Y, Kakroodi A R, Park C B. Effects of polymer-filler interactions on controlling the conductive network formation in polyamide 6/multi-Walled carbon nanotube composites [J]. Polymer, 2019, 178: 121684
doi: 10.1016/j.polymer.2019.121684
25 Ghane N, Mazinani S, Gharehaghaji A A. Comparing the performance of electrospun and cast nanocomposite film of polyamide-6 reinforced with multi-wall carbon nanotubes [J]. Journal of Plastic Film and Sheeting, 2018, 35(1): 45
doi: 10.1177/8756087918794229
26 Zhou S T, Hrymak A N, Kamal M R, et al. Electrical, Morphological and Thermal Properties of Microinjection Molded Polypropylene/Multi-Walled Carbon Nanotubes Nanocomposites [J]. Journal of the Polymer Processing Society, 2018, 33(4): 514
27 Song B. Study on the properties of PA6 modified by multilayer graphene [J]. Modern Plastics Processing Application, 2017, 29(4): 42
宋 波. 多层石墨烯对PA6改性的性能研究 [J]. 现代塑料加工应用, 2017, 29 (04): 42
28 Aidan O N, Bakirtzis D, Dixon D. Polyamide 6/Graphene composites: The effect of in situ polymerisation on the structure and properties of graphene oxide and reduced graphene oxide [J]. European Polymer Journal, 2014, 59: 353
doi: 10.1016/j.eurpolymj.2014.07.038
29 Li C, Xiang M, Ye L. Intercalation structure and highly enhancing tribological performance of monomer casting nylon-6/graphene nano-composites [J]. Composites Part A: Applied Science & Manufacturing, 2017, 95: 274
30 Ding P, Su S, Song N, et al. Influence on thermal conductivity of polyamide-6 covalently-grafted graphene nanocomposites: varied grafting-structures by controllable macromolecular length [J]. Rsc Advances, 2014, 4(36): 18782
doi: 10.1039/c4ra00500g
31 Rao C N R, Biswas K, Subrahmanyam K S, et al. Graphene, the new nanocarbon [J]. Journal of Materials Chemistry, 2009, 19(17): 2457
doi: 10.1039/b815239j
32 Zhao X R, Chen W, Han X, et al. Enhancement of interlaminar fracture toughness in textile-reinforced epoxy composites with polyamide 6/graphene oxide interlaminar toughening tackifier [J]. Composites Science and Technology, 2020, 191: 108094
doi: 10.1016/j.compscitech.2020.108094
33 Madhad H V, Vasava D V. Review on recent progress in synthesis of graphene-polyamide nanocomposites [J]. Journal of Thermoplastic Composite Materials, 2019, 35: 570
doi: 10.1177/0892705719880942
34 Wang Z, Tong X, Yang J C, et al. Improved strength and toughness of semi-aromatic polyamide 6T-co-6(PA6T/6)/GO composites via in situ polymerization [J]. Composites Science and Technology, 2019, 175: 6
doi: 10.1016/j.compscitech.2019.02.026
35 Zhao X, Li Y, Chen W, et al. Improved fracture toughness of epoxy resin reinforced with polyamide 6/graphene oxide nanocomposites prepared via in situ polymerization [J]. Composites Science and Technology, 2018, 171: 180
doi: 10.1016/j.compscitech.2018.12.023
36 Pablo G M, Ernesto H H, Salvador F T, et al. Exfoliation, reduction, hybridization and polymerization mechanisms in one-step microwave-assist synthesis of nanocomposite nylon-6/graphene [J]. Polymer, 2018, 146: 73
doi: 10.1016/j.polymer.2018.05.014
37 Gong L, Yin B, Li L P, et al. Nylon-6/gaphene composites modified through polymeric modification of gaphene [J]. Composites: Part B, 2015, 73: 49
doi: 10.1016/j.compositesb.2014.12.009
38 Huang H, Chen Y Z, Guo Y, et al. Structure and properties of PA6/GO nanocomposite by in-situ polymerization [J], Chinese Journal of Materials Research, 2019, 33(8): 621
黄 欢, 陈 林, 郭 怡 等. 原位聚合法制备PA6/GO纳米复合材料的结构与性能研究 [J]. 材料研究学报, 2019, 33(8): 621
39 Huang H, Yan L, Guo Y, Lin H L, et al. Morphological, mechanical and thermal properties of PA6 nanocomposites Co-Incorporated with Nano-Al2O3 and graphene oxide fillers [J]. Polymer, 2020, 188: 122119
doi: 10.1016/j.polymer.2019.122119
40 Hummers J R W S. Offeman R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society, 1958, 80(6): 1339
doi: 10.1021/ja01539a017
41 Li X, Shao L, Song N. Enhanced thermal-conductive and anti-dripping properties of polyamide composites by 3D graphene structures at low filler content [J]. Composites Part A: Applied Science & Manufacturing, 2016, 88: 305
42 Geon-Woong L, Min P, Junkyung K, al et, Enhanced thermal conductivity of polymer composites filled with hybrid filler [J]. Composites Part A: Applied Science & Manufacturing, 2005, 37: 727
43 Yu W, Xie H Q, Chen L F, et al. Graphene Nanoplatelets/Nylon 6 Composites With High Thermal Conductivity [J]. Journal of Engineering Thermophysics, 2013, 34(9): 1749
于 伟, 谢华清, 陈立飞 等. 高导热含石墨烯纳米片尼龙6复合材料 [J]. 工程热物理学报, 2013, 34(09): 1749
[1] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!