|
|
Microstructure and Mechanical Properties of High-entropy Alloys (FeNiCoCr)100-x Al x (x=0, 5) Prepared by Hot-pressing Sintering |
WANG Peijin1,2, AI Taotao1,2( ), LIAO Zhongni1,2, ZHAO Kun1, LI Wenhu1,2, KOU Lingjiang1,2, ZHAO Zhongguo1,2, ZOU Xiangyu1,2 |
1.School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China 2.National & Local Joint Engineering Laboratory for Environmental Protection Technology for Comprehensive Utilization of Slag, Shaanxi University of Technology, Hanzhong 723000, China |
|
Cite this article:
WANG Peijin, AI Taotao, LIAO Zhongni, ZHAO Kun, LI Wenhu, KOU Lingjiang, ZHAO Zhongguo, ZOU Xiangyu. Microstructure and Mechanical Properties of High-entropy Alloys (FeNiCoCr)100-x Al x (x=0, 5) Prepared by Hot-pressing Sintering. Chinese Journal of Materials Research, 2022, 36(11): 871-880.
|
Abstract The high-entropy alloys (FeNiCoCr)100-x Al x (x=0, 5) were prepared via a two-step process i.e., low-energy ball milling and then vacuum hot-pressing sintering, while the alloys were post-aged, afterwards, their microstructure and mechanical properties were assessed. The results show that the microstructure of both the as-sintered and the aged alloys composed of fcc-phase and a small amount of bcc phase, but twins presented in the fcc phase, and the proportion of twins for the alloy without Al was relatively high. The alloy with Al had relatively high bcc phase, and many small-angle grain boundaries appeared after aging treatment. The aged FeNiCoCr alloy has the best comprehensive performance, with a compressive true yield strength of 545 MPa. Moreover, the bending strength and the fracture toughness of the aged FeNiCoCr alloy reached 1342 MPa and 32.5 MPa·m1/2. The excellent mechanical properties were attributed to the generation of annealing twins in the fcc-phase and the precipitation of the bcc-phase.
|
Received: 26 June 2021
|
|
Fund: National Natural Science Foundation of China(51671116) |
About author: AI Taotao, Tel: (0916)2641880, E-mail: aitaotao0116@126.com
|
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
|
2 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
|
3 |
Ranganathan S. Alloyed pleasures: Multimetallic cocktails [J]. Curr. Sci., 2003, 85: 1404
|
4 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
|
5 |
Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
|
6 |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
|
7 |
Lucas M S, Wilks G B, Mauger L, et al. Absence of long-range chemical ordering in equimolar FeCoCrNi [J]. Appl. Phys. Lett., 2012, 100: 251907
doi: 10.1063/1.4730327
|
8 |
Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy [J]. Nat. Commun., 2015, 6: 5964
doi: 10.1038/ncomms6964
pmid: 25601270
|
9 |
Schön C G. On short-range order strengthening and its role in high-entropy alloys [J]. Scr. Mater., 2021, 196: 113754
doi: 10.1016/j.scriptamat.2021.113754
|
10 |
Wang W R, Wang W L, Yeh J W. Phases, microstructure and mechanical properties of Al x CoCrFeNi high-entropy alloys at elevated temperatures [J]. J. Alloys Compd., 2014, 589: 143
doi: 10.1016/j.jallcom.2013.11.084
|
11 |
Sokkalingam R, Mishra S, Cheethirala S R, et al. Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy [J]. Metall. Mater. Trans., 2017, 48A: 3630
|
12 |
Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged Al x CoCrFeNi high entropy alloys at room and cryogenic temperatures [J]. Intermetallics, 2016, 70: 24
doi: 10.1016/j.intermet.2015.11.002
|
13 |
Lv Y K, Hu R Y, Yao Z H, et al. Cooling rate effect on microstructure and mechanical properties of Al x CoCrFeNi high entropy alloys [J]. Mater. Des., 2017, 132: 392
doi: 10.1016/j.matdes.2017.07.008
|
14 |
Shi Y Z, Collins L, Feng R, et al. Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance [J]. Corros. Sci., 2018, 133: 120
doi: 10.1016/j.corsci.2018.01.030
|
15 |
Zhang C, Zhang F, Chen S L, et al. Computational thermodynamics aided high-entropy alloy design [J]. JOM, 2012, 64: 839
doi: 10.1007/s11837-012-0365-6
|
16 |
Chou H P, Chang Y S, Chen S K, et al. Microstructure, thermophysical and electrical properties in Al x CoCrFeNi (0≤x≤2) high-entropy alloys [J]. Mater. Sci. Eng., 2009, 163B: 184
|
17 |
Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
doi: 10.1016/j.intermet.2012.03.005
|
18 |
Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metall. Mater. Trans., 2005, 36A: 1263
|
19 |
Xu X D, Liu P, Tang Z, et al. Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi [J]. Acta Mater., 2018, 144: 107
|
20 |
Yasuda H Y, Shigeno K, Nagase T. Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals [J]. Scr. Mater., 2015, 108: 80
doi: 10.1016/j.scriptamat.2015.06.022
|
21 |
Chu C L, Chen W P, Chen Z, et al. Microstructure and mechanical behavior of FeNiCoCr and FeNiCoCrMn high-entropy alloys fabricated by powder metallurgy [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 445
doi: 10.1007/s40195-020-01150-9
|
22 |
Sokkalingam R, Tarraste M, Surreddi K B, et al. Powder metallurgy of Al0.1CoCrFeNi high-entropy alloy [J]. J. Mater. Res., 2020, 35: 2835
doi: 10.1557/jmr.2020.272
|
23 |
Jayasree R, Mane R B, Vijay R, et al. Effect of process control agents on mechanically alloyed Al0.3CoCrFeNi [J]. Mater. Lett., 2021, 292: 129618
doi: 10.1016/j.matlet.2021.129618
|
24 |
Shi Y Z. Microstructures and corrosion-resistant properties of Al x-CoCrFeNi high-entropy alloys [D]. Beijing: University of Science and Technology Beijing, 2018
|
|
石芸竹. Al x CoCrFeNi系高熵合金微观组织与耐蚀性能研究 [D]. 北京: 北京科技大学, 2018
|
25 |
Chen Y L, Hu Y H, Hsieh C A, et al. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system [J]. J. Alloys Compd., 2009, 481: 768
doi: 10.1016/j.jallcom.2009.03.087
|
26 |
Colombini E, Rosa R, Trombi L, et al. High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating [J]. Mater. Chem. Phys., 2018, 210: 78
doi: 10.1016/j.matchemphys.2017.06.065
|
27 |
Fang S C, Chen W P, Fu Z Q. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering [J]. Mater. Des., 2014, 54: 973
doi: 10.1016/j.matdes.2013.08.099
|
28 |
Anber E A, Lang A C, Lass E A, et al. Insight into the kinetic stabilization of Al0.3CoCrFeNi high-entropy alloys [J]. Materialia, 2020, 14: 100872
doi: 10.1016/j.mtla.2020.100872
|
29 |
Chen Q Q, Song G S, Xu Y, et al. Analysis on the twinning of FCC metals by EBSD [J]. Forg. Stamp. Technol., 2015, 40(5): 140
|
|
陈强强, 宋广胜, 徐 勇 等. FCC金属孪晶的EBSD分析 [J]. 锻压技术, 2015, 40(5): 140
|
30 |
Dasari S, Sarkar A, Sharma A, et al. Recovery of cold-worked Al0.3CoCrFeNi complex concentrated alloy through twinning assisted B2 precipitation [J]. Acta Mater., 2021, 202: 448
doi: 10.1016/j.actamat.2020.10.071
|
31 |
Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
|
32 |
Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, 527A: 2738
|
33 |
Zhang J B, Li Z P, Yang L Y, et al. Atomic mechanisms of dislocation and TB interaction in FCC metallic materials [J]. J. Chin. Electr. Microsc. Soc., 2020, 39: 731
|
|
张家宝, 李志鹏, 杨鲁岩 等. FCC金属中位错与孪晶界交互作用的原子机制 [J]. 电子显微学报, 2020, 39: 731
|
34 |
Field D P, Bradford L T, Nowell M M, et al. The role of annealing twins during recrystallization of Cu [J]. Acta Mater., 2007, 55: 4233
doi: 10.1016/j.actamat.2007.03.021
|
35 |
Dong M H, Han P D, Zhang C L, et al. First-principles study of stacking fault energy and deformation twin energy in Al-Mg alloys [J]. Acta Metall. Sin., 2011, 47: 573
|
|
董明慧, 韩培德, 张彩丽 等. Al-Mg合金中层错和孪晶形变能的第一性原理研究 [J]. 金属学报, 2011, 47: 573
doi: 10.3724/SP.J.1037.2010.00715
|
36 |
Yang J, Qiao J W, Ma S G, et al. Revealing the Hall-Petch relationship of Al0.1CoCrFeNi high-entropy alloy and its deformation mechanisms [J]. J. Alloys Compd., 2019, 795: 269
doi: 10.1016/j.jallcom.2019.04.333
|
37 |
Gwalani B, Soni V, Lee M, et al. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy [J]. Mater. Des., 2017, 121: 254
doi: 10.1016/j.matdes.2017.02.072
|
38 |
Jagetia A, Nartu M S K K Y, Dasari S, et al. Ordering-mediated local nano-clustering results in unusually large Hall-Petch strengthening coefficients in high entropy alloys [J]. Mater. Res. Lett., 2021, 9: 213
doi: 10.1080/21663831.2020.1871440
|
39 |
Gwalani B, Choudhuri D, Liu K M, et al. Interplay between single phase solid solution strengthening and multi-phase strengthening in the same high entropy alloy [J]. Mater. Sci. Eng., 2020, 771A: 138620
|
40 |
Li J S, Jia W J, Wang J, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method [J]. Mater. Des., 2016, 95: 183
doi: 10.1016/j.matdes.2016.01.112
|
41 |
Jiang H, Han K M, Qiao D X, et al. Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 43
doi: 10.1016/j.matchemphys.2017.05.056
|
42 |
Ma H, Shek C H. Effects of Hf on the microstructure and mechanical properties of CoCrFeNi high entropy alloy [J]. J. Alloys Compd., 2020, 827: 154159
doi: 10.1016/j.jallcom.2020.154159
|
43 |
Huang T D, Jiang L, Zhang C L, et al. Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy [J]. Sci. China Technol. Sci., 2018, 61: 117
doi: 10.1007/s11431-017-9134-6
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|