Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (11): 871-880    DOI: 10.11901/1005.3093.2021.383
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of High-entropy Alloys (FeNiCoCr)100-x Al x (x=0, 5) Prepared by Hot-pressing Sintering
WANG Peijin1,2, AI Taotao1,2(), LIAO Zhongni1,2, ZHAO Kun1, LI Wenhu1,2, KOU Lingjiang1,2, ZHAO Zhongguo1,2, ZOU Xiangyu1,2
1.School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
2.National & Local Joint Engineering Laboratory for Environmental Protection Technology for Comprehensive Utilization of Slag, Shaanxi University of Technology, Hanzhong 723000, China
Cite this article: 

WANG Peijin, AI Taotao, LIAO Zhongni, ZHAO Kun, LI Wenhu, KOU Lingjiang, ZHAO Zhongguo, ZOU Xiangyu. Microstructure and Mechanical Properties of High-entropy Alloys (FeNiCoCr)100-x Al x (x=0, 5) Prepared by Hot-pressing Sintering. Chinese Journal of Materials Research, 2022, 36(11): 871-880.

Download:  HTML  PDF(5894KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high-entropy alloys (FeNiCoCr)100-x Al x (x=0, 5) were prepared via a two-step process i.e., low-energy ball milling and then vacuum hot-pressing sintering, while the alloys were post-aged, afterwards, their microstructure and mechanical properties were assessed. The results show that the microstructure of both the as-sintered and the aged alloys composed of fcc-phase and a small amount of bcc phase, but twins presented in the fcc phase, and the proportion of twins for the alloy without Al was relatively high. The alloy with Al had relatively high bcc phase, and many small-angle grain boundaries appeared after aging treatment. The aged FeNiCoCr alloy has the best comprehensive performance, with a compressive true yield strength of 545 MPa. Moreover, the bending strength and the fracture toughness of the aged FeNiCoCr alloy reached 1342 MPa and 32.5 MPa·m1/2. The excellent mechanical properties were attributed to the generation of annealing twins in the fcc-phase and the precipitation of the bcc-phase.

Key words:  metallic materials      high-entropy alloys      hot-pressing sintering      microstructure      mechanical properties      twins     
Received:  26 June 2021     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China(51671116)
About author:  AI Taotao, Tel: (0916)2641880, E-mail: aitaotao0116@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.383     OR     https://www.cjmr.org/EN/Y2022/V36/I11/871

Fig.1  XRD spectra of (FeNiCoCr)100-x Al x (x=0, 5) high-entropy alloys before and after aging
Fig.2  EDS element maps of (FeCoNiCr)100-x Al x (x=0, 5) high-entropy alloys Al0 (a, b) and Al5 (c, d) before aging (a, c) and after aging (b, d)
Fig.3  EBSD maps of (FeNiCoCr)100-x Al x (x=0, 5) high-entropy alloys Al0 (a, b) and Al5 (c, d) before aging (a, c) and after aging (b, d) (a1~d1) phase maps, (a2~d2) inverse pole figure (IPF) maps, (a3~d3) grain boundaries and phase boundaries maps (The black line represents high-angle grain boundaries, the red line represents small-angle grain boundaries, and the blue line represents phase boundaries), (a4~d4) KAM diagram, (a5~d5) diagram of grain boundaries and twin boundaries in FCC phases (The black line represents phase boundaries, and the red line represents 60°<111> twin boundaries)
Fig.4  EBSD diagram of sintered FeNiCoCr high-entropy alloys (a) orientation imaging image, (b) KAM image corresponding to image (a), and (c) twin boundary orientation difference image
Fig.5  Misorientation angle distribution diagram (a1~d1) and grain size distribution map (a2~d2) of the (FeNiCoCr)100-x Al x (x=0, 5) high-entropy alloys. Al0 before aging (a1~a2), Al0 after aging (b1~b2), Al5 before aging (c1~c2) and Al5 after aging (d1~d2)
Fig.6  Fracture morphologies of (FeCoNiCr)100-x Al x (x=0, 5) high-entropy alloys after bending tests Al0 before aging (a), Al0 after aging (b), Al5 before aging (c), and Al5 after aging (d)
Fig.7  Compression true stress-strain curves of (FeNi-CoCr)100-x Al x (x=0, 5) high-entropy alloys before and after aging
Fig.8  (a) Flexural strength, fracture toughness, and (b) hardness of (FeNiCoCr)100-x Al x (x=0, 5) high-entropy alloys before and after aging
Preparation methodPhase composition

Grain size

/μm

Compression engineering yield strength

/MPa

Vickers hardness (HV)
Hot-pressing sintering (in this study)FCC matrix+BCC phase precipitation~3534252
Arc melting [40]Single FCC phase>400137-
Arc melting+Supercooled solidification [40]FCC matrix+BCC phase precipitation5~10455-
Arc melting [41]Single FCC phase-145141
Arc melting [42]Single FCC phase∼100156156
Arc melting [43]Single FCC phase-155133
Table 1  Differences in microstructure and mechanical properties of FeNiCoCr alloy prepared by hot pressing sintering and arc melting
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
3 Ranganathan S. Alloyed pleasures: Multimetallic cocktails [J]. Curr. Sci., 2003, 85: 1404
4 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
5 Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
6 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
7 Lucas M S, Wilks G B, Mauger L, et al. Absence of long-range chemical ordering in equimolar FeCoCrNi [J]. Appl. Phys. Lett., 2012, 100: 251907
doi: 10.1063/1.4730327
8 Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy [J]. Nat. Commun., 2015, 6: 5964
doi: 10.1038/ncomms6964 pmid: 25601270
9 Schön C G. On short-range order strengthening and its role in high-entropy alloys [J]. Scr. Mater., 2021, 196: 113754
doi: 10.1016/j.scriptamat.2021.113754
10 Wang W R, Wang W L, Yeh J W. Phases, microstructure and mechanical properties of Al x CoCrFeNi high-entropy alloys at elevated temperatures [J]. J. Alloys Compd., 2014, 589: 143
doi: 10.1016/j.jallcom.2013.11.084
11 Sokkalingam R, Mishra S, Cheethirala S R, et al. Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy [J]. Metall. Mater. Trans., 2017, 48A: 3630
12 Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged Al x CoCrFeNi high entropy alloys at room and cryogenic temperatures [J]. Intermetallics, 2016, 70: 24
doi: 10.1016/j.intermet.2015.11.002
13 Lv Y K, Hu R Y, Yao Z H, et al. Cooling rate effect on microstructure and mechanical properties of Al x CoCrFeNi high entropy alloys [J]. Mater. Des., 2017, 132: 392
doi: 10.1016/j.matdes.2017.07.008
14 Shi Y Z, Collins L, Feng R, et al. Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance [J]. Corros. Sci., 2018, 133: 120
doi: 10.1016/j.corsci.2018.01.030
15 Zhang C, Zhang F, Chen S L, et al. Computational thermodynamics aided high-entropy alloy design [J]. JOM, 2012, 64: 839
doi: 10.1007/s11837-012-0365-6
16 Chou H P, Chang Y S, Chen S K, et al. Microstructure, thermophysical and electrical properties in Al x CoCrFeNi (0≤x≤2) high-entropy alloys [J]. Mater. Sci. Eng., 2009, 163B: 184
17 Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
doi: 10.1016/j.intermet.2012.03.005
18 Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metall. Mater. Trans., 2005, 36A: 1263
19 Xu X D, Liu P, Tang Z, et al. Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi [J]. Acta Mater., 2018, 144: 107
20 Yasuda H Y, Shigeno K, Nagase T. Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals [J]. Scr. Mater., 2015, 108: 80
doi: 10.1016/j.scriptamat.2015.06.022
21 Chu C L, Chen W P, Chen Z, et al. Microstructure and mechanical behavior of FeNiCoCr and FeNiCoCrMn high-entropy alloys fabricated by powder metallurgy [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 445
doi: 10.1007/s40195-020-01150-9
22 Sokkalingam R, Tarraste M, Surreddi K B, et al. Powder metallurgy of Al0.1CoCrFeNi high-entropy alloy [J]. J. Mater. Res., 2020, 35: 2835
doi: 10.1557/jmr.2020.272
23 Jayasree R, Mane R B, Vijay R, et al. Effect of process control agents on mechanically alloyed Al0.3CoCrFeNi [J]. Mater. Lett., 2021, 292: 129618
doi: 10.1016/j.matlet.2021.129618
24 Shi Y Z. Microstructures and corrosion-resistant properties of Al x-CoCrFeNi high-entropy alloys [D]. Beijing: University of Science and Technology Beijing, 2018
石芸竹. Al x CoCrFeNi系高熵合金微观组织与耐蚀性能研究 [D]. 北京: 北京科技大学, 2018
25 Chen Y L, Hu Y H, Hsieh C A, et al. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system [J]. J. Alloys Compd., 2009, 481: 768
doi: 10.1016/j.jallcom.2009.03.087
26 Colombini E, Rosa R, Trombi L, et al. High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating [J]. Mater. Chem. Phys., 2018, 210: 78
doi: 10.1016/j.matchemphys.2017.06.065
27 Fang S C, Chen W P, Fu Z Q. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering [J]. Mater. Des., 2014, 54: 973
doi: 10.1016/j.matdes.2013.08.099
28 Anber E A, Lang A C, Lass E A, et al. Insight into the kinetic stabilization of Al0.3CoCrFeNi high-entropy alloys [J]. Materialia, 2020, 14: 100872
doi: 10.1016/j.mtla.2020.100872
29 Chen Q Q, Song G S, Xu Y, et al. Analysis on the twinning of FCC metals by EBSD [J]. Forg. Stamp. Technol., 2015, 40(5): 140
陈强强, 宋广胜, 徐 勇 等. FCC金属孪晶的EBSD分析 [J]. 锻压技术, 2015, 40(5): 140
30 Dasari S, Sarkar A, Sharma A, et al. Recovery of cold-worked Al0.3CoCrFeNi complex concentrated alloy through twinning assisted B2 precipitation [J]. Acta Mater., 2021, 202: 448
doi: 10.1016/j.actamat.2020.10.071
31 Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
32 Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, 527A: 2738
33 Zhang J B, Li Z P, Yang L Y, et al. Atomic mechanisms of dislocation and TB interaction in FCC metallic materials [J]. J. Chin. Electr. Microsc. Soc., 2020, 39: 731
张家宝, 李志鹏, 杨鲁岩 等. FCC金属中位错与孪晶界交互作用的原子机制 [J]. 电子显微学报, 2020, 39: 731
34 Field D P, Bradford L T, Nowell M M, et al. The role of annealing twins during recrystallization of Cu [J]. Acta Mater., 2007, 55: 4233
doi: 10.1016/j.actamat.2007.03.021
35 Dong M H, Han P D, Zhang C L, et al. First-principles study of stacking fault energy and deformation twin energy in Al-Mg alloys [J]. Acta Metall. Sin., 2011, 47: 573
董明慧, 韩培德, 张彩丽 等. Al-Mg合金中层错和孪晶形变能的第一性原理研究 [J]. 金属学报, 2011, 47: 573
doi: 10.3724/SP.J.1037.2010.00715
36 Yang J, Qiao J W, Ma S G, et al. Revealing the Hall-Petch relationship of Al0.1CoCrFeNi high-entropy alloy and its deformation mechanisms [J]. J. Alloys Compd., 2019, 795: 269
doi: 10.1016/j.jallcom.2019.04.333
37 Gwalani B, Soni V, Lee M, et al. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy [J]. Mater. Des., 2017, 121: 254
doi: 10.1016/j.matdes.2017.02.072
38 Jagetia A, Nartu M S K K Y, Dasari S, et al. Ordering-mediated local nano-clustering results in unusually large Hall-Petch strengthening coefficients in high entropy alloys [J]. Mater. Res. Lett., 2021, 9: 213
doi: 10.1080/21663831.2020.1871440
39 Gwalani B, Choudhuri D, Liu K M, et al. Interplay between single phase solid solution strengthening and multi-phase strengthening in the same high entropy alloy [J]. Mater. Sci. Eng., 2020, 771A: 138620
40 Li J S, Jia W J, Wang J, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method [J]. Mater. Des., 2016, 95: 183
doi: 10.1016/j.matdes.2016.01.112
41 Jiang H, Han K M, Qiao D X, et al. Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 43
doi: 10.1016/j.matchemphys.2017.05.056
42 Ma H, Shek C H. Effects of Hf on the microstructure and mechanical properties of CoCrFeNi high entropy alloy [J]. J. Alloys Compd., 2020, 827: 154159
doi: 10.1016/j.jallcom.2020.154159
43 Huang T D, Jiang L, Zhang C L, et al. Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy [J]. Sci. China Technol. Sci., 2018, 61: 117
doi: 10.1007/s11431-017-9134-6
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!