Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (10): 786-792    DOI: 10.11901/1005.3093.2021.235
ARTICLES Current Issue | Archive | Adv Search |
Effect of Nitrogen on Microstructure and Properties of Quenched and Partitioned Super Martensitic Stainless Steel
PANG Yang, ZOU Dening(), LI Yunong, LI Miaomiao, YAN Xingyu, HE Chan
School of Metallurgical Engineering, Xi ' an University of Architecture and Technology, Xi ' an 710055, China
Cite this article: 

PANG Yang, ZOU Dening, LI Yunong, LI Miaomiao, YAN Xingyu, HE Chan. Effect of Nitrogen on Microstructure and Properties of Quenched and Partitioned Super Martensitic Stainless Steel. Chinese Journal of Materials Research, 2022, 36(10): 786-792.

Download:  HTML  PDF(14683KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A super martensitic stainless steel was alloyed with nitrogen, and afterwards subjected to quenching and partitioning treatments. Then the performance of three super martensite stainless steels without and with 0.23% and 0.35% nitrogen (in mass fraction), respectively were characterized by means of OM, SEM, TEM, EBSD, BSD, universal testing machine and Vickers hardness tester, in terms of the effect of nitrogen on their microstructure and mechanical properties. The results show that: The addition of nitrogen refines the martensitic slats of the steels, and of which the average width was reduced from 2.93 μm to 0.65 μm. During the partitioning treatment, the high nitrogen concentration provides a driving force for the formation of inverting austenite and facilitates its stabilizing at room temperature. The strength and plasticity of the steels alloyed with nitrogen are obviously higher than those of the nitrogen free ones, the tensile strength and elongation of steels with 0.23 N and 0.35 N are 1510 MPa and 24.2%, and 1215 MPa and 35.1%, respectively. It can be seen that nitrogen alloying is beneficial to improve the mechanical properties of super martensitic stainless steel.

Key words:  metallic materials      super martensitic stainless steel process      Q&P process      mechanical properties     
Received:  15 April 2021     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51774226);Major Program of Science and Technology in Shanxi Province(20181101016);Major Program of Science and Technology in Shanxi Province(20191102006)
About author:  ZOU Dening, Tel: 18991165516, E-mail: zoudening@sina.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.235     OR     https://www.cjmr.org/EN/Y2022/V36/I10/786

No.CrCNiMoMnSiPSNVFe
0N13.050.0245.080.691.980.290.0090.00500Bal.
0.23N13.150.0255.120.712.040.280.0090.0050.230.06Bal.
0.35N13.020.0234.980.712.010.290.0090.0060.350.06Bal.
Table 1  Chemical composition of experimental steel (mass fraction, %)
Fig.1  Q&P process roadmap of experimental steel
Fig.2  OM images of test steels with different N contents (a) 0%N, (b) 0.23%N, (c) 0.35%N
Fig.3  EBSD images of test steels with different N contents (a~c) 0%N, (d~f) 0.23%N, (g~i) 0.35%N
Test steels0N0.23N0.35N
Volume fraction of austenite / %0.0121.628.3
Table 2  Austenite volume fraction of test steels with different N contents after Q&P treatment
Fig.4  EBSD images of tensile fracture of 0.35N test stee (a) sampling location, (b) EBSD phase distribution diagram
Fig.5  TEM microstructure analysis of 0.35N test steel (a) bright field image, (b) dark field image, (c) energy spectrum of precipitated phase
Fig.6  BSD images of 0.35N test steel (a) multiple of 5k, (b) multiple of 10k, (c) energy spectrum of precipitated phase
Fig.7  Mechanical properties of test steels with different N contents after Q&P treatment (a) tensile strength, (b) elongation-Hardness
Fig.8  Tensile fracture morphology of test steels with different N contents (a) 0%N, (b) 0.23%N, (c) 0.35%N
1 Wang S L. Research progress on composition, process and corrosion properties of super martensitic stainless steels [J]. Continuous Casting, 2019, 44(03): 23
王胜利. 超级马氏体不锈钢成分、工艺和腐蚀性能的研究进展 [J]. 连铸, 2019, 44(03): 23
2 Jiang W, Zhao K Y, Ye D, et al. Effect of heat treatment technology on reversed austenite in super martensitic stainless steel [J]. Iron and Steel, 2015, 50(02):70
姜 雯, 赵昆渝, 业 冬 等. 热处理工艺对超级马氏体钢逆变奥氏体的影响 [J]. 钢铁, 2015, 50(02): 70
3 Pang Y, Zou D N, Lv X, et al. Effect of manganese on microstructure and properties of high nitrogen super martensitic stainless steel [J]. Iron and Steel, 2021, 56(03): 34
庞 阳, 邹德宁, 吕 香 等. 锰对高氮超级马氏体不锈钢组织与性能的影响 [J]. 钢铁, 2021, 56(03): 34
4 Aquino J M, Della Rovere C A, Kuri S E. Localized corrosion susceptibility of supermartensitic stainless steel in welded joints [J]. Corrosion, 2008, 64(1): 35
doi: 10.5006/1.3278459
5 Anselmo N, May J E, Mariano N A, et al. Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater [J]. Materials Science and Engineering A. Structural Materials: Properties, Microstructure and Processing, 2006, A428(1/2): 73
6 Wang H G, Ge Y H, Shi L. Technologies in deep and ultra-deep well drilling: Present status, challenges and future trend in the 13th Five-Year Plan period [J]. Natural Gas Industry, 2017, 37(4): 1
汪海阁, 葛云华, 石 林. 深井超深井钻完井技术现状、挑战和"十三五"发展方向 [J]. 天然气工业, 2017, 37(4): 1
7 Guo X T, Ren S J, Peng X M, et al. Strength check of casing in high temperature deep well test in Dagang Oilfield [J]. Well Testing, 2019, 28(06): 38
郭秀庭, 任世举, 彭雪梅 等. 大港油田高温深井试油套管强度校核 [J]. 油气井测试, 2019, 28(06): 38
8 Luo Y, Zhang C X, Jin L, et al. Failure analysis on corrosion and perforation of L80 steel oil pipe of an oil well [J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2020, 56(03): 52
罗 懿, 张传旭, 金 磊 等. 某油井L80钢油管腐蚀穿孔失效分析 [J]. 理化检验-物理分册, 2020, 56(03): 52
9 Yan Z S, Sun L B, Zhang C Y, et al. Development for seamless oil casing with ultrahigh strength and good toughness for ultra deep oil well [N]. World Metal Report, 2012-07-31(B12)
严泽生, 孙徕博, 张传友 等. 超深井用超高强度高韧性石油套管的开发 [N]. 世界金属导报, 2012-07-31(B12)
10 Speer J, Matlock D K, Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Materialia, 2003, 51(9): 2611
doi: 10.1016/S1359-6454(03)00059-4
11 Yuan L, Ponge D, Wittig J, et al. Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe-Cr-C steel [J]. Acta Materialia, 2012, 60: 2790
doi: 10.1016/j.actamat.2012.01.045
12 Kobayashi J, Ina D, Yoshikawa N, et al. Effects of the addition of Cr, Mo and Ni on the microstructure and retained austenite characteristics of 0.2% C-Si-Mn-Nb ultrahigh-strength TRIP-aided bainitic ferrite steels [J]. ISIJ International, 2012, 52(10): 1894
doi: 10.2355/isijinternational.52.1894
13 Jia G X, Wang C Y, Song W Y, et al. Effects of initial quenched martensite on microstructure and mechanical properties of quenching and partitioning steel [J]. Iron and Steel, 2015, 50(05): 69
贾国翔, 王存宇, 宋文英 等. 一次淬火马氏体对Q&P钢组织和性能的影响 [J]. 钢铁, 2015, 50(05): 69
14 Liu M, Hu H J, Tian J Y, et al. Integrated austempering and quenching-partitioning process of a bainitic steel [J]. Iron and Steel, 2021, 56(01): 69
刘 曼, 胡海江, 田俊羽 等. 贝氏体钢等温淬火和淬火-配分复合工艺 [J]. 钢铁, 2021, 56(01): 69
15 Song Y Y, Cui J P, Rong L J. Microstructure and mechanical properties of 06Cr13Ni4Mo steel treated by quenching-tempering-partitioning process [J]. Journal of Materials Science & amp; Technology, 2016, 32(02): 189
16 Ma X P, Wang L, Liu C M, et al. Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel [J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2012, 539(539): 271
doi: 10.1016/j.msea.2012.01.093
17 Zhou Z A, Fu W T, Zhu Z, et al. Excellent mechanical properties and resistance to cavitation erosion for an ultra-low carbon Cr Mn N stainless steel through quenching and partitioning treatment [J]. International Journal of Minerals Metallurgy and Materials, 2018, 25(05): 547
doi: 10.1007/s12613-018-1601-z
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!