Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (5): 365-372    DOI: 10.11901/1005.3093.2021.405
ARTICLES Current Issue | Archive | Adv Search |
In-situ Study of Microcrack Initiation and Propagation of M2 High Speed Steel
HU Haibo1, ZHU Lihui1(), DUAN Yuanman1, WU Xiaochun1, GU Bingfu2
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Jiangsu Fuda Special Steel Co, Ltd, Yangzhong 212200, China
Cite this article: 

HU Haibo, ZHU Lihui, DUAN Yuanman, WU Xiaochun, GU Bingfu. In-situ Study of Microcrack Initiation and Propagation of M2 High Speed Steel. Chinese Journal of Materials Research, 2022, 36(5): 365-372.

Download:  HTML  PDF(18336KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The tensile behavior of M2 high speed steel was studied by using an in-situ loading platform in scanning electron microscope (SEM). The results show that during the in-situ tensile process, microcracks mainly initiate and propagate at the interface between large eutectic carbide and the matrix of M2 high speed steel. Compared with the tempered martensite, cracks initiate more easily on the retained austenite. The size, shape and type of carbides also have important effect on the initiation and propagation of microcracks. It follows that reducing the amount and the size of massive residual austenite, primary eutectic carbides, and MC carbides, as well as appropriately adjusting the shape of carbides can slow down the initiation and propagation of microcracks.

Key words:  metallic materials      M2 high speed steel      in-situ tensile test      microcracks initiation and propagation      carbide     
Received:  14 July 2021     
ZTFLH:  TG430.40  
Fund: National Key Research and Development Program of China(2016YFB0300403);Jinshan Talents Plan of Zhenjiang of 2017;Innovation and Entrepreneurship Talents Plan of Jiangsu Province of 2018
About author:  ZHU Lihui, Tel: 13564632476, E-mail: lhzhu@i.shu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.405     OR     https://www.cjmr.org/EN/Y2022/V36/I5/365

CWMoCrVSiMnPSFe
0.8506.3805.3704.3402.1000.2280.2800.0670.020Bal.
Table 1  Chemical composition of M2 high speed steel (mass fraction, %)
Fig.1  Shape and dimensions of the in-situ tensile specimen
Fig.2  SEM images and EDS analysis of M2 high speed steel after quenching and tempering
Fig.3  TEM images of microstructure in M2 high speed steel after quenching and tempering (a) bright field image; (b) dark field image of martensite; (c) dark field image of austenite; (d) electron diffraction patterns
Fig.4  Stress-strain curve of M2 high speed steel during in-situ tensile test
Fig.5  Initiation and propagation of microcracks (a) σ=180 MPa; (b) (c) σ=442 MPa; (d) (e) σ=646 MPa
Fig.6  Microcracks initiated in the matrix and EDS analysis
Fig.7  Load-displacement curves for nano indentation of cracked area (region 1) and uncracked area (region 2)
Fig.8  Morphology of microcracks induced by carbides (a) separation of carbides and matrix; (b) fracture of carbide
Fig.9  Statistics of microcracks generated at the interfaces between matrix and carbides with different shapes (a) typical morphology of carbides with different shapes; (b) comparison of cracking rates
Fig.10  Fracture morphology and EDS area scanning of large-size carbide (a) morphology of cracked carbide; (b) schematic diagram of fractured carbide; (c) EDS analysis
1 Boccalini M, Goldenstein H. Solidification of High Speed Steels [J]. Int. Met. Rev., 2001, 46(2): 92
doi: 10.1179/095066001101528411
2 Keun C H, Sunghak L, Hui C L. Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls: Part I: Microstructural analysis [J]. Mater. Sci. Eng. A, 1998, 254(1): 282
doi: 10.1016/S0921-5093(98)00626-1
3 Luan Y, Song N, Bai Y, et al. Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls [J]. J. Mater. Process. Technol., 2010, 210(3): 536
doi: 10.1016/j.jmatprotec.2009.10.017
4 Leskovšek V, Ule B, Lii B. Relations between fracture toughness, hardness and microstructure of vacuum heat-treated high-speed steel [J]. J. Mater. Process. Technol., 2002, 127(3): 298
doi: 10.1016/S0924-0136(02)00280-7
5 Tier M D, Fantinelli D G, Parcianello C T, et al. Effect of heat and cryogenic treatment on wear and toughness of HSS AISI M2 [J]. J. Mater. Process. Technol., 2020, 9(6): 12354
6 Lu L, Huang J F, Hou L G. Effect of niobium on the microstructure and properties of spray-formed M3:2 high speed steel [J]. J. Univ. Sci. Technol. Beijing, 2014, 36(10): 1292
卢 林, 黄进峰, 侯陇刚. 铌对喷射成形M3:2型高速钢组织和性能的影响 [J]. 工程科学学报, 2014, 36(10): 1292
7 Rodenburg C, et al. A quantitative analysis of the influence of carbides size distributions on wear behaviour of high-speed steel in dry rolling/sliding contact [J]. Acta Mater., 2007, 55(7): 2443
doi: 10.1016/j.actamat.2006.11.039
8 Yu F, Xu D, Luo D. Carbide defect in high speed steel [J]. J. Iron Steel Res., 2008, 20(6): 1
俞 峰, 许 达, 罗 迪. 高速钢中的碳化物缺陷 [J]. 钢铁研究学报, 2008, 20(6): 1
9 Torres E A, Ramírez A J. In situ scanning electron microscopy [J]. Sci. Technol. Weld. Joining, 2011, 16(1): 1
doi: 10.1179/136217110X12918228303775
10 Jiang C, Lu H, Zhang H, et al. Recent advances on in situ sem mechanical and electrical characterization of low-dimensional nanomaterials [J]. Scanning, 2017, 2017(8): 1
11 Chen X, Esa V, Jonny G. In-situ SEM observation on fracture behavior of austempered silicon alloyed steel [J]. China Foundry, 2009, 6(3): 185
12 Liu B L. The in-situ study on the coordinate rotation of metal micro structure in plastic deformation [D]. Nanjing: Southeast University, 2016
刘宝良. 金属变形过程中微观组织协调行为的原位研究 [D]. 南京: 东南大学, 2016
13 Chen L L. Study on alloy carbides control in high speed steel [D]. Nanjing: Southeast University, 2016
陈雷雷. 高速钢合金碳化物控制研究 [D]. 南京: 东南大学, 2016
14 Fu S, Pan W Q, Wang A T, et al. Phase transformation refinement of coarse primary carbides in M2 high speed steel [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21(2): 180
doi: 10.1016/S1002-0071(12)60053-7
15 Zhang X F, Yin X Y, Fang F, et al. Influence of rare earths on eutectic carbides in AISI M2 high speed steel [J]. J. Rare Earths, 2012, 30(10): 1075
doi: 10.1016/S1002-0721(12)60181-1
16 Li Z X. The energy absorption effect and microstructure evolution of high-speed steels under high pressure [D]. Luoyang: Henan University of Science and Technology, 2015
李志勋. 高应力作用下高速钢能量吸收效应及组织演变 [D]. 洛阳: 河南科技大学, 2015
17 Ghosh A, Ray A, Chakrabarti D, et al. Cleavage initiation in steel: Competition between large grains and large particles [J]. Mater. Sci. Eng. A, 2013, 561(20): 126
doi: 10.1016/j.msea.2012.11.019
18 Echeverría A, Rodriguez-Ibabe J M. The role of grain size in brittle particle induced fracture of steels [J]. Mater. Sci. Eng. A, 2003, 346(1): 149
doi: 10.1016/S0921-5093(02)00538-5
19 Shu D L. Mechanical Properties of Metal [M]. Beijing: China Machine Press, 1987
束德林. 金属力学性能 [M]. 北京: 机械工业出版社, 1987
20 Casellas D, Caro J, Molas S, et al. Fracture toughness of carbides in tool steels evaluated by nanoindentation [J]. Acta Mater., 2007, 55(13): 4277
doi: 10.1016/j.actamat.2007.03.028
21 Zhou X, Zheng Z, Zhang W, et al. Deformation-induced carbide transformation in M2 high-speed steel [J]. Metall. Mater. Trans. A, 2019, 51(2): 568
22 Ha T K, Yang E I, Jung J Y, et al. Effect of alloying elements and homogenization treatment on carbide formation behavior in M2 high speed steels [J]. Journal of the Korean Institute of Metals and Materials, 2010, 48(7): 589
23 Chaus A S, Dománková M. Precipitation of secondary carbides in M2 high-speed steel modified with titanium diboride [J]. J. Mater. Eng. Perform., 2013, 22(5): 1412
doi: 10.1007/s11665-012-0407-9
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!