|
|
Mechanical Properties of In-situ Synthesised Nano Al2O3/Al-Zn-Cu Composites |
LIU Siyu, LI Zhengyuan( ), CHEN Lijia, LI Feng |
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110136, China |
|
Cite this article:
LIU Siyu, LI Zhengyuan, CHEN Lijia, LI Feng. Mechanical Properties of In-situ Synthesised Nano Al2O3/Al-Zn-Cu Composites. Chinese Journal of Materials Research, 2022, 36(4): 307-313.
|
Abstract Nano Al2O3 particles reinforced Al-Zn-Cu alloy composite of Al2O3/Al-Zn-Cu was prepared by a two-step process, namely nano-ZnO powder and Al powder were first ball-milled and then cold-pressed to prepare Al-ZnO preforms, and next which was added to the stirring Al-Zn-Cu melt, thereby nano Al2O3 particles reinforced Al-Zn-Cu based composites were prepared through Al-ZnO in-situ reaction. The results of energy spectrum scan and transmission electron microscope show that there are mainly two kinds of particles/precipitated phases in the composite material: nano Al2O3 particles and Al2Cu precipitated phases. The grain structure and precipitates of Al-Zn-Cu alloy were refined by nano-sized Al2O3 particles through the heterogeneous nucleation and grain boundary pinning. The formation of in-situ nano Al2O3 particles could enhance the tensile properties of the base alloy. After proper rolling + heat treatment the Al2O3/Al-Zn-Cu composites present tensile strength and total elongation percentage ca 100% and 98% higher than that of the Al-Zn-Cu matrix alloy equally treated, respectively.
|
Received: 21 February 2021
|
|
Fund: Liaoning Provincial Department of Education Science and Technology Research Service Local Project(201724141) |
About author: LI Zhengyuan, Tel: (024)25496301, E-mail: zhengyli@sut.edu.cn
|
1 |
Imran M, Khan A R A. Characterization of Al-7075 metal matrix composites: a review [J]. J. Mater. Res. Technol., 2019, 8: 3347
doi: 10.1016/j.jmrt.2017.10.012
|
2 |
Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy [J]. Acta Metall. Sin., 2021, 57: 129
|
|
高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略 [J]. 金属学报, 2021, 57: 129
|
3 |
Wu M W, Hua L, Zhou J X, et al. Advances in thermal conductive aluminum alloys and aluminum matrix composites [J]. Mater. Rev., 2018, 32: 1486
|
|
吴孟武, 华 林, 周建新 等. 导热铝合金及铝基复合材料的研究进展 [J]. 材料导报, 2018, 32: 1486
|
4 |
Yashpal, Sumankant, Jawalkar C S, et al. Fabrication of aluminium metal matrix composites with particulate reinforcement: A review [J]. Mater. Today: Proc., 2017, 4: 2927
|
5 |
Gobalakrishnan B, Rajaravi C, Udhayakumar G, et al. Effect of ceramic particulate addition on aluminium based ex-situ and in-situ formed metal matrix composites [J]. Met. Mater. Int., 2020, 27: 3695
doi: 10.1007/s12540-020-00868-6
|
6 |
Wu X Y, Zhang L Z, Zhao Z Y, et al. Research status of particle reinforced 7××× series aluminum matrix composites [J]. Nonferrous Met. Eng., 2020, 10(11): 11
|
|
武侠宇, 张立正, 赵占勇 等. 颗粒增强7×××系铝基复合材料研究现状 [J]. 有色金属工程, 2020, 10(11): 11
|
7 |
Hassanzadeh-Aghdam M K, Haghgoo M, Ansari R. Micromechanical study of elastic-plastic and thermoelastic behaviors of SiC nanoparticle-reinforced aluminum nanocomposites [J]. Mech. Mater., 2018, 121: 1
doi: 10.1016/j.mechmat.2018.03.001
|
8 |
Syresh S, Moorthi N S V, Vettivel S C, et al. Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology [J]. Mater. Des., 2014, 59: 383
doi: 10.1016/j.matdes.2014.02.053
|
9 |
Rui Z, Zhao Y T, Zhang S L, et al. In situ fabrication and microstucture of ZrB2 particles reinforced aluminum matrix composites [J]. Adv. Mater. Res., 2012, 476-478: 122
|
10 |
Pan H, Fan G L, Tan Z Q, et al. Preparation methods and developing trends of nano-Al2O3-reinforced aluminum matrix composites [J]. Mater. Rev., 2015, 29(1): 36
|
|
潘 浩, 范根莲, 谭占秋 等. 纳米Al2O3增强铝基复合材料的制备技术和发展方向 [J]. 材料导报, 2015, 29(1): 36
|
11 |
Kumar A, Lal S, Kumar S. Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method [J]. J. Mater. Res. Technol., 2013, 2: 250
doi: 10.1016/j.jmrt.2013.03.015
|
12 |
Sujan D, Oo Z, Rahman M E, et al. Physio-mechanical properties of aluminium metal matrix composites reinforced with Al2O3 and SiC [J]. Int. J. Mater. Metall. Eng., 2012, 6: 678
|
13 |
Xu T, Li G R, Xie M L, et al. Microstructure and mechanical properties of in-situ nano γ-Al2O3p/A356 aluminum matrix composite [J]. J. Alloys Compd., 2019, 787: 72
doi: 10.1016/j.jallcom.2019.02.045
|
14 |
Mou S Y, Chen G, Zhang Z Y, et al. Reaction mechanism of nano-sized Al2O3p/Al composites prepared in Al-SiO2 system [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 883
|
|
牟姝妤, 陈 刚, 张振亚 等. Al-SiO2体系反应生成纳米Al2O3p/Al复合材料的机理 [J]. 特种铸造及有色合金, 2020, 40: 883
|
15 |
Zhang Z L, Chen G, Zhao Y T, et al. Effects of squeezing casting on microstructure and properties of in-situ α-Al2O3p/ZL109 composite [J]. Spec. Cast. Nonferrous Alloys, 2017, 37: 83
|
|
张再磊, 陈 刚, 赵玉涛 等. 挤压铸造对α-Al2O3p/ZL109复合材料组织与性能的影响 [J]. 特种铸造及有色合金, 2017, 37: 83
|
16 |
Ma P, Jia Y D, Gokuldoss P K, et al. Effect of Al2O3 nanoparticles as reinforcement on the tensile behavior of Al-12Si composites [J]. Metals, 2017, 7: 359
doi: 10.3390/met7090359
|
17 |
Cheng L, Zhu D G, Gao Y, et al. Microstructure and properties of in situ fabricated Al-5wt. %Si-Al2O3 composites [J]. Adv. Mater. Res., 2012, 567: 15
|
18 |
Zhao G, Shi Z M, Zhang R Y. Effect of CuO particle size on the microstructure evolution of Al2O3P/Al composites prepared via displacement reactions in the Al/CuO system [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 699
|
19 |
Li S F, Liu L, Zhang Xet al. A method of preparing in-situ nano-alumina content-controllable aluminum-based composite material [P]. China Pat, 201910753514.7, 2019
|
|
李树丰, 刘 磊, 张 鑫 等. 一种原位纳米氧化铝含量可控的铝基复合材料的制备方法 [P]. 中国专利, 201910753514.7, 2019)
|
20 |
Yu P, Deng C J, Ma N G, et al. A new method of producing uniformly distributed alumina particles in Al-based metal matrix composite [J]. Mater. Lett., 2004, 58: 679
doi: 10.1016/j.matlet.2003.06.001
|
21 |
Schultz B F, Ferguson J B, Rohatgi P K. Microstructure and hardness of Al2O3 nanoparticle reinforced Al-Mg composites fabricated by reactive wetting and stir mixing [J]. Mater. Sci. Eng., 2011, 530A: 87
|
22 |
Ferguson J B, Lopez H F, Rohatgi P K, et al. Impact of volume fraction and size of reinforcement particles on the grain size in metal-matrix micro and nanocomposites [J]. Metall. Mater. Trans., 2014, 45A: 4055
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|