Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (4): 307-313    DOI: 10.11901/1005.3093.2021.144
ARTICLES Current Issue | Archive | Adv Search |
Mechanical Properties of In-situ Synthesised Nano Al2O3/Al-Zn-Cu Composites
LIU Siyu, LI Zhengyuan(), CHEN Lijia, LI Feng
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110136, China
Cite this article: 

LIU Siyu, LI Zhengyuan, CHEN Lijia, LI Feng. Mechanical Properties of In-situ Synthesised Nano Al2O3/Al-Zn-Cu Composites. Chinese Journal of Materials Research, 2022, 36(4): 307-313.

Download:  HTML  PDF(19768KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nano Al2O3 particles reinforced Al-Zn-Cu alloy composite of Al2O3/Al-Zn-Cu was prepared by a two-step process, namely nano-ZnO powder and Al powder were first ball-milled and then cold-pressed to prepare Al-ZnO preforms, and next which was added to the stirring Al-Zn-Cu melt, thereby nano Al2O3 particles reinforced Al-Zn-Cu based composites were prepared through Al-ZnO in-situ reaction. The results of energy spectrum scan and transmission electron microscope show that there are mainly two kinds of particles/precipitated phases in the composite material: nano Al2O3 particles and Al2Cu precipitated phases. The grain structure and precipitates of Al-Zn-Cu alloy were refined by nano-sized Al2O3 particles through the heterogeneous nucleation and grain boundary pinning. The formation of in-situ nano Al2O3 particles could enhance the tensile properties of the base alloy. After proper rolling + heat treatment the Al2O3/Al-Zn-Cu composites present tensile strength and total elongation percentage ca 100% and 98% higher than that of the Al-Zn-Cu matrix alloy equally treated, respectively.

Key words:  composite      nano Al2O3 particles      in-situ      Al-ZnO system     
Received:  21 February 2021     
ZTFLH:  TG146.2  
Fund: Liaoning Provincial Department of Education Science and Technology Research Service Local Project(201724141)
About author:  LI Zhengyuan, Tel: (024)25496301, E-mail: zhengyli@sut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.144     OR     https://www.cjmr.org/EN/Y2022/V36/I4/307

Composition

Tensile Strength

/MPa

Utimate tensile strength /MPaHardness (HB)Ref.
Al241.5-70[11]
Al+5% Al2O3262.2-76
Al+10% Al2O3276.0-80
Al(A359)103.7--[12]
Al(A359)+4% Al2O3120.6--
Al(7075)-210-[1]
Al(7075)+4% Al2O3-226-
Table 1  Mechanical properties of part common Al2O3 particle reinforced Al matrix composite
Fig.1  Energy spectrum scan of Al-ZnO powder after ball milling
ElementsZnCuZrOAl
Content6.62.10.141.4Bal.
Table 2  Al2O3/Al-Zn-Cu composite material composition (mass fraction, %)
Fig.2  XRD patterns of Al-ZnO powder (a) and composite materials (b)
Fig.3  EBSD patterns of Al-Zn-Cu base alloy (a) and Al2O3/Al-Zn-Cu composite (b) after rolling + heat treatment
Fig.4  BSE images of Al-Zn-Cu base alloy (a) and Al2O3/Al-Zn-Cu composite (b) after rolling + heat treatment
Fig.5  EDS mapping of Al2O3/Al-Zn-Cu composite after rolling + heat treatment
Fig.6  TEM image of Al2O3/Al-Zn-Cu composite (a) and SAED of α-Al2O3 (b) and Al2Cu/α-Al (c) after rolling + heat treatment
Fig.7  Stress-strain curve of Al-Zn-Cu matrix alloys and nano Al2O3/Al-Zn-Cu composites
SamplesTensile strength, σt/MPaYield strength, σ0.2/MPaTotal elongation, At/%
As-cast Al-Zn-Cu159.4±10.297.7±7.115.7±3.1
Rolling + heat treatment Al-Zn-Cu197.6±11.7166.5±7.916.9±5.1
As-cast Al2O3/Al-Zn-Cu235.5±15.5187.2±8.915.8±5.5
Rolling + heat treatment Al2O3/Al-Zn-Cu398.2±12.8249.1±5.533.5±9.5
Table 3  Tensile strength, yield strength and total elongation of Al-Zn-Cu base alloy and Al2O3/Al-Zn-Cu composite
Fig.8  Tensile fracture morphology of Al-Zn-Cu matrix alloys and nano Al2O3/Al-Zn-Cu composites (a) As-cast Al-Zn-Cu; (b) Rolling + heat treatment Al-Zn-Cu; (c) As-cast Al2O3/Al-Zn-Cu; (d) Rolling + heat treatment Al2O3/Al-Zn-Cu
1 Imran M, Khan A R A. Characterization of Al-7075 metal matrix composites: a review [J]. J. Mater. Res. Technol., 2019, 8: 3347
doi: 10.1016/j.jmrt.2017.10.012
2 Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy [J]. Acta Metall. Sin., 2021, 57: 129
高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略 [J]. 金属学报, 2021, 57: 129
3 Wu M W, Hua L, Zhou J X, et al. Advances in thermal conductive aluminum alloys and aluminum matrix composites [J]. Mater. Rev., 2018, 32: 1486
吴孟武, 华 林, 周建新 等. 导热铝合金及铝基复合材料的研究进展 [J]. 材料导报, 2018, 32: 1486
4 Yashpal, Sumankant, Jawalkar C S, et al. Fabrication of aluminium metal matrix composites with particulate reinforcement: A review [J]. Mater. Today: Proc., 2017, 4: 2927
5 Gobalakrishnan B, Rajaravi C, Udhayakumar G, et al. Effect of ceramic particulate addition on aluminium based ex-situ and in-situ formed metal matrix composites [J]. Met. Mater. Int., 2020, 27: 3695
doi: 10.1007/s12540-020-00868-6
6 Wu X Y, Zhang L Z, Zhao Z Y, et al. Research status of particle reinforced 7××× series aluminum matrix composites [J]. Nonferrous Met. Eng., 2020, 10(11): 11
武侠宇, 张立正, 赵占勇 等. 颗粒增强7×××系铝基复合材料研究现状 [J]. 有色金属工程, 2020, 10(11): 11
7 Hassanzadeh-Aghdam M K, Haghgoo M, Ansari R. Micromechanical study of elastic-plastic and thermoelastic behaviors of SiC nanoparticle-reinforced aluminum nanocomposites [J]. Mech. Mater., 2018, 121: 1
doi: 10.1016/j.mechmat.2018.03.001
8 Syresh S, Moorthi N S V, Vettivel S C, et al. Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology [J]. Mater. Des., 2014, 59: 383
doi: 10.1016/j.matdes.2014.02.053
9 Rui Z, Zhao Y T, Zhang S L, et al. In situ fabrication and microstucture of ZrB2 particles reinforced aluminum matrix composites [J]. Adv. Mater. Res., 2012, 476-478: 122
10 Pan H, Fan G L, Tan Z Q, et al. Preparation methods and developing trends of nano-Al2O3-reinforced aluminum matrix composites [J]. Mater. Rev., 2015, 29(1): 36
潘 浩, 范根莲, 谭占秋 等. 纳米Al2O3增强铝基复合材料的制备技术和发展方向 [J]. 材料导报, 2015, 29(1): 36
11 Kumar A, Lal S, Kumar S. Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method [J]. J. Mater. Res. Technol., 2013, 2: 250
doi: 10.1016/j.jmrt.2013.03.015
12 Sujan D, Oo Z, Rahman M E, et al. Physio-mechanical properties of aluminium metal matrix composites reinforced with Al2O3 and SiC [J]. Int. J. Mater. Metall. Eng., 2012, 6: 678
13 Xu T, Li G R, Xie M L, et al. Microstructure and mechanical properties of in-situ nano γ-Al2O3p/A356 aluminum matrix composite [J]. J. Alloys Compd., 2019, 787: 72
doi: 10.1016/j.jallcom.2019.02.045
14 Mou S Y, Chen G, Zhang Z Y, et al. Reaction mechanism of nano-sized Al2O3p/Al composites prepared in Al-SiO2 system [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 883
牟姝妤, 陈 刚, 张振亚 等. Al-SiO2体系反应生成纳米Al2O3p/Al复合材料的机理 [J]. 特种铸造及有色合金, 2020, 40: 883
15 Zhang Z L, Chen G, Zhao Y T, et al. Effects of squeezing casting on microstructure and properties of in-situ α-Al2O3p/ZL109 composite [J]. Spec. Cast. Nonferrous Alloys, 2017, 37: 83
张再磊, 陈 刚, 赵玉涛 等. 挤压铸造对α-Al2O3p/ZL109复合材料组织与性能的影响 [J]. 特种铸造及有色合金, 2017, 37: 83
16 Ma P, Jia Y D, Gokuldoss P K, et al. Effect of Al2O3 nanoparticles as reinforcement on the tensile behavior of Al-12Si composites [J]. Metals, 2017, 7: 359
doi: 10.3390/met7090359
17 Cheng L, Zhu D G, Gao Y, et al. Microstructure and properties of in situ fabricated Al-5wt. %Si-Al2O3 composites [J]. Adv. Mater. Res., 2012, 567: 15
18 Zhao G, Shi Z M, Zhang R Y. Effect of CuO particle size on the microstructure evolution of Al2O3P/Al composites prepared via displacement reactions in the Al/CuO system [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 699
19 Li S F, Liu L, Zhang Xet al. A method of preparing in-situ nano-alumina content-controllable aluminum-based composite material [P]. China Pat, 201910753514.7, 2019
李树丰, 刘 磊, 张 鑫 等. 一种原位纳米氧化铝含量可控的铝基复合材料的制备方法 [P]. 中国专利, 201910753514.7, 2019)
20 Yu P, Deng C J, Ma N G, et al. A new method of producing uniformly distributed alumina particles in Al-based metal matrix composite [J]. Mater. Lett., 2004, 58: 679
doi: 10.1016/j.matlet.2003.06.001
21 Schultz B F, Ferguson J B, Rohatgi P K. Microstructure and hardness of Al2O3 nanoparticle reinforced Al-Mg composites fabricated by reactive wetting and stir mixing [J]. Mater. Sci. Eng., 2011, 530A: 87
22 Ferguson J B, Lopez H F, Rohatgi P K, et al. Impact of volume fraction and size of reinforcement particles on the grain size in metal-matrix micro and nanocomposites [J]. Metall. Mater. Trans., 2014, 45A: 4055
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!