Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (1): 73-80    DOI: 10.11901/1005.3093.2020.490
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of Polylactic Acid Chemically Grafted with Epoxidized Soybean Oil
CAI Yao1, WU Hongmei1(), LIU Wu2, LI Duan1, FAN Shiyi1, WANG Yangyang1
1.College of Chemistry and Chemical Engineering, University of South China, Hengyang 421000, China
2.Dongguan Huilin New Material Technology Co. Ltd. , Dongguan 523000, China
Cite this article: 

CAI Yao, WU Hongmei, LIU Wu, LI Duan, FAN Shiyi, WANG Yangyang. Preparation and Properties of Polylactic Acid Chemically Grafted with Epoxidized Soybean Oil. Chinese Journal of Materials Research, 2022, 36(1): 73-80.

Download:  HTML  PDF(3391KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Maleic anhydride (MAH) grafted polylactic acid (PLA), namely MPLA was made via melting reaction method. Then reactive compatilizer ESO-G-(MAH-co-PLA) (ECP) was further prepared via chemical graft of epoxidized soybean oil (ESO) and MPLA.The prepared ECP was characterized by FT-IR, DSC and SEM. The influence of four different feeding methods and mole ratio between ESO and MAH on graft rate and acid value of ECP was investigated. The results show that during the MPLA preparation stage, 1/3 of the desired amount ESO was added first, and subsequently the remaining 2/3 of ESO and all triethylamine were added at the chemical graft stage, as a result the grafting rate of ECP was up to 4.1514%;When the mole ratio of ESO to MAH group is 1, the grafting effect of products is the best. The PLA material modified with ECP has better comprehensive performance than the one with ESO. The addition of ECP can improve the hydrophobic performance of PLA.

Key words:  composite      chemical grafting      modification      epoxidized soybean oil     
Received:  17 November 2020     
ZTFLH:  TQ317  
Fund: National Natural Science Foundation of China(21104031);Education Department of Hunan Province in 2020(20C1589)
About author:  WU Hongmei, Tel: 13875636309, E-mail: wuhongmei2016@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.490     OR     https://www.cjmr.org/EN/Y2022/V36/I1/73

SamplesPLA/%, mass fractionESO/%TEA/%
ESO0.3-TEA0.3 MPLA1000.30.3
ESO0.3-TEA0 MPLA1000.30
ESO0-TEA0 MPLA10000
ESO0-TEA0.3 MPLA10000.3
Table 1  Formulation of 4 kinds MPLA masterbatch
SamplesMPLA/% ,mass fractionESO/%TEA/%
ESO0.3-TEA0.3 ECP1000.70.7
ESO0.3-TEA0 ECP1000.71
ESO0-TEA0 ECP10011
ESO0-TEA0.3 ECP10010.7
Table 2  Formulation of 4 kinds ECP products
Fig.1  FT-IR spectra of samples (a) 4 kinds MPLA masterbatch, Neat PLA, MAH and (b) four kinds ECP products and (c) ECP products with diff-erent group molar ratio of ESO and MAH
SamplesTg/℃TCC/℃Tm/℃ΔCp/J·g-1·KΔHC/J·g-1ΔHm/J·g-1χc/%
ESO0.3-TEA0.3 MPLA58.6113.2169.60.52239.0538.381.52
ESO0.3-TEA0 MPLA57.0107.5168.50.45631.1328.323.00
ESO0-TEA0 MPLA60.3111.3168.00.57126.5429.933.63
ESO0-TEA0.3 MPLA59.8100.8168.60.54127.3631.284.19
Neat PLA60.5102.9169.30.55634.6336.091.57
ESO0.3-TEA0.3 ECP56.5104.0167.90.50534.6035.310.75
ESO0.3-TEA0 ECP59.1110.5169.40.51736.6736.080.63
ESO0-TEA0 ECP57.698.3168.20.50636.3644.378.57
ESO0-TEA0.3 ECP58.7100.5168.50.55437.4841.264.04
1n ECP59.1110.5169.40.51736.6736.080.63
1.5n ECP60.1105.1169.50.47038.0333.724.61
2n ECP59.2104.6168.40.49634.6832.802.01
Table 3  DSC Data of all samples
Fig.2  DSC heat flow curves of (a) 4 kinds MPLA masterbatch, Neat PLA (b) 4 kinds ECP products (c) ECP products with different group molar ratio of ESO and MAH
SamplesAcid value /(mg KOH/g)Grafting rate/%
ESO0.3-TEA0.3 MPLA2.412.60
ESO0.3-TEA0 MPLA2.040.76
ESO0-TEA0 MPLA2.271.88
ESO0-TEA0.3 MPLA1.920.19
Neat PLA1.880
ESO0.3-TEA0.3 ECP2.523.10
ESO0.3-TEA0 ECP2.734.15
ESO0-TEA0 ECP2.623.62
ESO0-TEA0.3 ECP2.523.10
1n ECP2.734.15
1.5n ECP2.492.99
2n ECP2.422.63
Table 4  Acid value and grafting rate of samples
Fig.3  SEM images of (a) Neat PLA, (b) ESO0.3-TEA0.3 MPLA, (c) ESO0.3-TEA0 MPLA, (d) ESO0-TEA0 MPLA and (e) ESO0-TEA0.3 MPLA ,(f) ESO0.3-TEA0.3 ECP, (g) ESO0.3-TEA0 ECP, (h) ESO0-TEA0 ECP and (i) ESO0-TEA0.3 ECP, (j) 1n ECP, (k) 1.5n ECP and (l) 2n ECP
Fig.4  Comprehensive properties of Neat PLA, PLA/ESO and PLA/ECP. (a) yield strength and bending strength, (b) izod impact strength and elongation at break, (c) water contact angle and heat distortion temperature
1 Sangeetha V H, Deka H, Varghese T O, et al. State of the art and future prospectives of poly(lactic acid) based blends and composites [J]. Polym. Compos., 2018, 39: 81
2 Wang M, Wu Y, Li Y D, et al. Progress in toughening poly(lactic acid) with renewable polymers [J]. Polym. Rev., 2017, 57: 557
3 Balakrishnan H, Hassan A, Imran M, et al. Toughening of polylactic acid nanocomposites: a short review [J]. Polym. Plast. Technol. Eng., 2012, 51: 175
4 Zhang M, Jia H, Weng Y X, et al. Biodegradable PLA/PBAT mulch on microbial community structure in different soils [J]. Int. Biodeterior. Biodegradation, 2019, 145: 104817
5 Saini P, Arora M, Kumar M N V. Poly(lactic acid) blends in biomedical applications [J]. Adv. Drug Deliv. Rev., 2016, 107: 47
6 Nampoothiri K M, Nair N R, John R P. An overview of the recent developments in polylactide (PLA) research [J]. Bioresour. Technol., 2010, 101: 8493
7 Maiza M, Benaniba M T, Quintard G, et al. Biobased additive plasticizing Polylactic acid (PLA) [J]. Polímeros, 2015, 25: 581
8 Yuan W Q, Zhang H, Weng Y X, et al. Fully biobased polylactide/epoxidized soybean oil resin blends with balanced stiffness and toughness by dynamic vulcanization [J]. Polym. Test., 2019, 78: 105981
9 Przybytek A, Sienkiewicz M, Kucińska-Lipka J, et al. Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions [J]. Ind. Crops Prod., 2018, 122: 375
10 Wang X Z, He J, Weng Y X, et al. Structure-property relationship in fully biobased epoxidized soybean oil thermosets cured by dicarboxyl terminated polyamide 1010 oligomer with different carboxyl/epoxy ratios [J]. Polym. Test., 2019, 79: 106057
11 Zhao T H, Yuan W Q, Li Y D, et al. Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends [J]. Macromolecules, 2018, 51: 2027
12 Liu W D, Qiu J H, Zhu L X, et al. Tannic acid-induced crosslinking of epoxidized soybean oil for toughening poly(lactic acid) via dynamic vulcanization [J]. Polymer, 2018, 148: 109
13 Gong X H, Xin M H, Li M C, et al. Study on preparation and properties of PLA/TW biocomposites plasticized with ESO [J]. Plast. Sci. Technol., 2019, 47(4): 54
龚新怀, 辛梅华, 李明春等. 环氧大豆油增塑聚乳酸/茶渣生物质复合材料的制备与性能研究 [J]. 塑料科技, 2019, 47(4): 54
14 Wang X M, Liu D Z. Study on the graftting yield of maleic anhydride grafted chlorinated polypropylene by neutralization titration [J]. Eng. Plast. Appl., 2009, 37(1): 52
王学敏, 刘大壮. 酸碱滴定法测定马来酸酐接枝氯化聚丙烯的接枝率 [J]. 工程塑料应用, 2009, 37(1): 52
15 Hou W L, Yang T, Yang Y D. Infrared spectrometric and thermogravimetric analysis of maleoyl chitosan [J]. Phys. Test. Chem. Anal., 2013, 49B: 1163
侯文龙, 杨 婷, 杨越冬. 马来酰化壳聚糖的红外光谱与热重分析 [J]. 理化检验(化学分册), 2013, 49: 1163
16 Xiong Z, Yang Y, Feng J X, et al. Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil [J]. Carbohydr. Polym., 2013, 92: 810
17 Hassouna F, Raquez J M, Addiego F, et al. New development on plasticized poly(lactide): Chemical grafting of citrate on PLA by reactive extrusion [J]. Eur. Polym. J., 2012, 48: 404
18 Santonja-Blasco L, Ribes-Greus A, Alamo R G. Comparative thermal, biological and photodegradation kinetics of polylactide and effect on crystallization rates [J]. Polym. Degrad. Stabil., 2013, 98: 771
19 Li H Y, Lu X P, Yang H, et al. Crystallization and melting of bacterial cellulose/polylactic acid composites with interpenetrating network [J]. Acta Mater. Compos. Sin., 2015, 32: 1294
李红月, 卢秀萍, 杨 华等. 细菌纤维素/聚乳酸互穿网络复合材料的结晶与熔融 [J]. 复合材料学报, 2015, 32: 1294
20 Ma L L, Shao J, Yang C G, et al. Synthesis and property of PDLA-PBS-PDLA tri-block copolymer [J]. Chem. J. Chin. Univ., 2015, 36: 2329
马丽莉, 邵 俊, 杨晨光等. PDLA-PBS-PDLA三嵌段共聚物的合成及性能 [J]. 高等学校化学学报, 2015, 36: 2329
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] LI Linlong, YANG Liqi, XUE Weihai, GAO Siyang, WANG Xu, DUAN Deli, LI Shu. Sliding Friction and Wear between Rare Earth Modified GCR15 Steel against Cage Materials[J]. 材料研究学报, 2023, 37(6): 408-416.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!