Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (3): 231-240    DOI: 10.11901/1005.3093.2021.105
ARTICLES Current Issue | Archive | Adv Search |
Anisotropy of Ti6Al4V Alloy Fabricated by Selective Laser Melting
DIAO Wei, DU Lei, WANG Yanbo, ZHOU Haitao, SUN Jingli()
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
Cite this article: 

DIAO Wei, DU Lei, WANG Yanbo, ZHOU Haitao, SUN Jingli. Anisotropy of Ti6Al4V Alloy Fabricated by Selective Laser Melting. Chinese Journal of Materials Research, 2022, 36(3): 231-240.

Download:  HTML  PDF(15538KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure, texture and properties of samples intercepted at different deposition heights and directions of the Ti6Al4V alloy fabricated by selective laser melting were investigated by metallographic analysis, XRD and tensile test. The results show that the vertical section parallel to the building direction presents microstructure of columnar-like prior-β grains filled with acicular martensite, while the cross section perpendicular to the building direction presents a block-like microstructure. The texture for the later cross section is stronger than that for the former one. The size of the columnar prior-β grains influences the mechanical properties along the building direction of the Ti6Al4V alloy fabricated by selective laser melting. The tensile strength and yield strength decrease first and then increase with the increase of deposition height, while the elongation variation has an opposite trend. The strength and plasticity of samples perpendicular to the building direction is higher than those parallel to the building direction due to the formed defects related with the weaker-texture and poor-fusion.

Key words:  metallic materials      anisotropy      Ti6Al4V alloy      selective laser melting     
Received:  19 January 2021     
ZTFLH:  TG146.23  
Fund: National Natural Science Foundation of China(51701116);Shanghai Rising-Star Program(19QB1402000);Shanghai Sailing Program(19YF142000)
About author:  SUN Jingli, Tel: (021)37842971, E-mail: sunjingli1221@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.105     OR     https://www.cjmr.org/EN/Y2022/V36/I3/231

ElementAlVFeOCNHTi
Content5.5~6.53.5~4.5<0.25<0.13<0.08<0.03<0.0125Bal.
Table 1  Chemical composition of Ti6Al4V alloy powder produced by gas atomization method (mass fraction, %)
Fig.1  Laser scanning methods (a) and different diagrams showing different cross sections (b)
Fig.2  Schematic diagram of the tensile sample
Fig.3  SEM micrograph showing the morphology of the powder produced using gas atomization method
Fig.4  Microstructures of the cross sections of SLM-fabricated Ti6Al4V alloy (a) XY and (b) TOP
Fig.5  SEM micrographs showing typical microstructures of the cross sections of SLM-fabricated Ti6Al4V alloy (a) XY and (b) TOP
Fig.6  XRD spectrum of the original powder and the built block of Ti6Al4V alloy fabricated by SLM
Fig.7  Microstructures of SLM-fabricated Ti6Al4V alloy on the XZ vertical sections (a) and XY cross sections (b)
Fig.8  SEM micrographs showing typical microstructures of the XZ vertical section (a) and XY cross section (b) of SLM-fabricated Ti6Al4V alloy
Fig.9  XRD spectrum of different sections of SLM-fabricated Ti6Al4V alloy
Cross-sectionsα'/α phaseβ phase
a/nmc/nma/ca/nm
TOP0.2919080.4658511.595880.322548
XY0.2924200.4661641.594160.322162
XZ0.2933420.4683631.596650.318152
Table 2  Lattice constants and the axial ratios of different phases on different sections
Cross-sectionsPhase content
α'β
TOP98.36%1.64%
XY99.04%0.96%
XZ99.70%0.3%
XZ[18]99.35%0.65%
XY[30]98.5%1.5%
Table 3  The fractions of the phases on different sections
Crystal planesCross-sections
XYTOPXZ
(100)1.251.754.79
(002)0.000.0010.91
(101)1.000.945.43
(102)49.3153.863.53
(110)46.0539.990.79
(103)1.512.672.57
(112)0.730.583.96
(201)0.020.0220.52
(004)0.080.1130.12
(202)0.050.0717.39
Average10.0010.0010.00
Preferred orientation(102) (110)(102) (110)(002) (201) (004) (202)
Table 4  Relative texture coefficient of each crystal planes on different sections (%)
Fig.10  The hardness on different cross sections of SLM-fabricated Ti6Al4V alloy
Fig.11  Hardness on different sections of SLM-fabricated Ti6Al4V alloy
Fig.12  Photos of tensile specimens (a) longitudinal specimens (L-XZ) and (b) horizontal specimens (T-XY)
Fig.13  Mechanical properties of SLM-fabricated Ti6Al-4V alloy
Fig.14  Microstructures of the XZ vertical section at the top (a), in the middle (b) and at the bottom (c)
Fig.15  SEM images showing the microstructures of XZ vertical sections at the top (a), at the middle (b), and at the bottom (c)
Fig.16  Mechanical properties of SLM-fabricated Ti6Al-4V alloy
Fig.17  Schematic diagram showing bonding defects in the as-deposited tensile specimens (a) L-XZ and (b) T-XY
1 Liu Z F, Huang Y D, Yang X, et al. Preparation of graphene/ni-cu alloy composite on Ni-Cu alloy template made by selective laser melting [J]. Chin. J. Mater. Res., 2021, 35: 1
刘主峰, 黄耀东, 杨 潇 等. 基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备 [J]. 材料研究学报, 2021, 35: 1
2 Wang Y, Jiang J J, Qiao L Y, et al. Study on biological corrosion and biocompatibility of TC4 alloy by selective laser melting [J]. J. Chongqing Univ., 2015, 38(3): 21
王 勇, 蒋军杰, 乔丽英 等. 选区激光熔化TC4生物腐蚀和生物相容性分析 [J]. 重庆大学学报, 2015, 38(3): 21
3 Guo N N, Leu M C. Additive manufacturing: technology, applications and research needs [J]. Front. Mech. Eng., 2013, 8: 215
4 Li G M, Liu S Y, Zhan D S, et al. Antibacterial properties and biocompatibility of SLM-fabricated medical titanium alloys [J]. Chin. J. Mater. Res., 2019, 33: 117
李改明, 刘思雨, 战德松 等. 3D打印医用钛合金的抗菌性能和体外生物相容性 [J]. 材料研究学报, 2019, 33: 117
5 Tolochko N K, Savich V V, Laoui T, et al. Dental root implants produced by the combined selective laser sintering/melting of titanium powders [J]. Proc. Inst. Mech. Eng., 2002, 216L: 267
6 Wehmöller M, Warnke P H, Zilian C, et al. Implant design and production—a new approach by selective laser melting [J]. Int. Congr. Ser., 2005, 1281: 690
7 Hollander D A, Wirtz T, Walter M V, et al. Development of individual three-dimensional bone substitutes using "selective laser melting" [J]. Eur. J. Trauma, 2003, 29: 228
8 Kruth J P, Vaerenbergh J V, Naert I, et al. Rapid manufacturing of dental prostheses by means of selective laser sintering/melting [J]. J. Dent. Technol., 2017, 24
9 Laoui T, Tolochko N K, Artushkevich A S, et al. Bone osseointegration tests performed on titanium dental root implants made by laser processing [J]. Int. J. Prod. Dev., 2004, 1: 165
10 Gebhardt A, Schmidt F M, Hötter J S, et al. Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry [J]. Phys. Proced., 2010, 5: 543
11 Sarker A, Tran N, Rifai A, et al. Angle defines attachment: switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting [J]. Mater. Des., 2018, 154: 326
12 Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V [J]. Mater. Sci. Eng., 2014, 616A: 1
13 Qiu C L, Adkins N J E, Attallah M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V [J]. Mater. Sci. Eng., 2013, 578A: 230
14 Vilaro T, Colin C, Bartout J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting [J]. Metall. Mater. Trans., 2011, 42A: 3190
15 Wu M W, Lai P H. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2016, 658A: 429
16 Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties [J]. J. Alloys Compd., 2012, 541: 177
17 Zhang Z X, Qu S J, Feng A H, et al. Hot deformation behavior of Ti-6Al-4V alloy: Effect of initial microstructure [J]. J. Alloys Compd., 2017, 718: 170
18 Yang J J. Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting [D]. Wuhan: Huazhong University of Science & Technology, 2017
杨晶晶. 激光选区熔化成形Ti-6Al-4V合金的组织演变及调控 [D]. 武汉: 华中科技大学, 2017
19 Roberts I A, Wang C J, Esterlein R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing [J]. Int. J. Mach. Tools Manufact., 2009, 49: 916
20 Zhang S Y, Lin X, Chen J, et al. Influence of heat treatment on the microstructure and properties of Ti-6Al-4V titanium alloy by laser rapid forming [J]. Rare Met. Mater. Eng., 2007, 36: 1263
张霜银, 林 鑫, 陈 静 等. 热处理对激光成形TC4合金组织及性能的影响 [J]. 稀有金属材料与工程, 2007, 36: 1263
21 Sercombe T, Jones N, Day R, et al. Heat treatment of Ti‐6Al‐7Nb components produced by selective laser melting [J]. Rapid Prototyp. J., 2008, 14: 300
22 Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti‐6Al‐4V alloy produced by selective laser melting of prealloyed powders [J]. Rap. Prototyp. J., 2010, 16: 450
23 Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Mater., 2010, 58: 3303
24 Bragg W L. The Diffraction of Short Electromagnetic Waves by A Crystal [M]. Cambridge: Cambridge University Press, 1913, 17: 43
25 Gerhard W, Boyer R R, Collings E W. Materials Properties Handbook: Titanium Alloys [M]. ASM International, 1994: 125
26 Gokcen N A. Binary Alloy Phase Diagrams [M]. Materials Park, Ohio: ASM International, 1990: 628
27 Rietveld H M. A profile refinement method for nuclear and magnetic structures [J]. J. Appl. Crystallogr., 1969, 2: 65
28 Schreiner W N. A standard test method for the determination of RIR values by X-Ray diffraction [J]. Powder Diffr., 1995, 10: 25
29 Buerger M J. Reduced cells [J]. Zeitschr. Für Kristall., 1957, 109: 42
30 Xiao Z N, Liu T T, Liao W H, et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment [J]. Chin. J. Laser, 2017, 44: 9
肖振楠, 刘婷婷, 廖文和 等. 激光选区熔化成形TC4钛合金热处理后微观组织和力学性能 [J]. 中国激光, 2017, 44: 9
31 Bérubé L P, L'Espérance G. A quantitative method of determining the degree of texture of zinc electrodeposits [J]. J. Electrochem. Soc., 1989, 136: 2314
32 Shen C, Xue Y J, Ku X C, et al. Effect of ultrasonic on microstructure and microhardness of Ni-ZrO2 nanocomposite coating [J]. Mater. Mech. Eng., 2010, 34(7): 80
申 晨, 薛玉君, 库祥臣 等. 超声波对Ni-ZrO2纳米复合镀层微观结构和显微硬度的影响 [J]. 机械工程材料, 2010, 34(7): 80
33 Antonysamy A A. Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications [D]. Manchester: University of Manchester, 2012
34 Li W Y, Chen Z Y, Liu J R, et al. Effect of texture on anisotropy at 600℃ in a near-α titanium alloy Ti60 plate [J]. Mater. Sci. Eng., 2017, 688A: 322
35 Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790
36 Ma Y, Du Z X, Cui X M, et al. Effect of cold rolling process on microstructure and mechanical properties of high strength β titanium alloy thin sheets [J]. Prog. Nat. Sci., 2018, 28: 711
37 Song X, Liu R. Microstructures and tensile behavior of 3D printed Ti-6Al-4V alloy sintered by electron beam melting: an experimental study [J]. Chin. J. Vac. Sci. Technol, 2020, 40: 103
宋 新, 刘 锐. 3D打印成形Ti-6Al-4V合金的组织和力学性能分析 [J]. 真空科学与技术学报, 2020, 40: 103
38 Zou T, Zhang M, Chen C J, et al. Study on the microstructure of Ti6Al4V alloy prepared by laser additive manufacturing (3D printing) [J]. Appl. Laser, 2016, 36: 286
邹 涛, 张 敏, 陈长军 等. 激光增材制造 (3D 打印) 制备钛合金的微观组织研究 [J]. 应用激光, 2016, 36: 286
39 Li Y. Study on the process and properties of porous metal prepared by laser additive manufacturing(3D printing) [D]. Suzhou: Soochow University, 2015
李 洋. 激光增材制造(3D打印)制备生物医用多孔金属工艺及组织性能研究 [D]. 苏州: 苏州大学, 2015
40 Wang W. Research on ill bonding of Ti-6Al-4V titanium alloy in laser rapid repair processing [D]. Xi'an: Northwestern Polytechnical University, 2007
王 维. TC4合金激光快速修复过程中熔合不良缺陷的评价研究 [D]. 西安: 西北工业大学, 2007
41 Tang Q. Research on defects formation mechanism of titanium alloy in electron beam freeform fabrication [D]. Wuhan: Huazhong University of Science and Technology, 2015
汤 群. 钛合金电子束快速成形缺陷形成机理研究 [D]. 武汉: 华中科技大学, 2015
42 Liu Z. The microstructure and tensile behavior of TC4 titanium alloy produced via electron beam rapid manufacturing [D]. Hefei: University of Science and Technology of China, 2019
刘 征. 电子束熔丝成形TC4合金的组织和拉伸力学行为研究 [D]. 合肥: 中国科学技术大学, 2019
43 Chen Z R, Ji X, Chu R K, et al. Effect of heat treatment on microstructure and properties of TC4 titanium alloy by laser melting deposition [J]. Heat Treat. Met., 2018, 43(11): 144
陈志茹, 计 霞, 楚瑞坤 等. 热处理工艺对激光熔化沉积TC4钛合金组织性能的影响 [J]. 金属热处理, 2018, 43(11): 144
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!