|
|
Anisotropy of Ti6Al4V Alloy Fabricated by Selective Laser Melting |
DIAO Wei, DU Lei, WANG Yanbo, ZHOU Haitao, SUN Jingli( ) |
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China |
|
Cite this article:
DIAO Wei, DU Lei, WANG Yanbo, ZHOU Haitao, SUN Jingli. Anisotropy of Ti6Al4V Alloy Fabricated by Selective Laser Melting. Chinese Journal of Materials Research, 2022, 36(3): 231-240.
|
Abstract The microstructure, texture and properties of samples intercepted at different deposition heights and directions of the Ti6Al4V alloy fabricated by selective laser melting were investigated by metallographic analysis, XRD and tensile test. The results show that the vertical section parallel to the building direction presents microstructure of columnar-like prior-β grains filled with acicular martensite, while the cross section perpendicular to the building direction presents a block-like microstructure. The texture for the later cross section is stronger than that for the former one. The size of the columnar prior-β grains influences the mechanical properties along the building direction of the Ti6Al4V alloy fabricated by selective laser melting. The tensile strength and yield strength decrease first and then increase with the increase of deposition height, while the elongation variation has an opposite trend. The strength and plasticity of samples perpendicular to the building direction is higher than those parallel to the building direction due to the formed defects related with the weaker-texture and poor-fusion.
|
Received: 19 January 2021
|
|
Fund: National Natural Science Foundation of China(51701116);Shanghai Rising-Star Program(19QB1402000);Shanghai Sailing Program(19YF142000) |
About author: SUN Jingli, Tel: (021)37842971, E-mail: sunjingli1221@126.com
|
1 |
Liu Z F, Huang Y D, Yang X, et al. Preparation of graphene/ni-cu alloy composite on Ni-Cu alloy template made by selective laser melting [J]. Chin. J. Mater. Res., 2021, 35: 1
|
|
刘主峰, 黄耀东, 杨 潇 等. 基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备 [J]. 材料研究学报, 2021, 35: 1
|
2 |
Wang Y, Jiang J J, Qiao L Y, et al. Study on biological corrosion and biocompatibility of TC4 alloy by selective laser melting [J]. J. Chongqing Univ., 2015, 38(3): 21
|
|
王 勇, 蒋军杰, 乔丽英 等. 选区激光熔化TC4生物腐蚀和生物相容性分析 [J]. 重庆大学学报, 2015, 38(3): 21
|
3 |
Guo N N, Leu M C. Additive manufacturing: technology, applications and research needs [J]. Front. Mech. Eng., 2013, 8: 215
|
4 |
Li G M, Liu S Y, Zhan D S, et al. Antibacterial properties and biocompatibility of SLM-fabricated medical titanium alloys [J]. Chin. J. Mater. Res., 2019, 33: 117
|
|
李改明, 刘思雨, 战德松 等. 3D打印医用钛合金的抗菌性能和体外生物相容性 [J]. 材料研究学报, 2019, 33: 117
|
5 |
Tolochko N K, Savich V V, Laoui T, et al. Dental root implants produced by the combined selective laser sintering/melting of titanium powders [J]. Proc. Inst. Mech. Eng., 2002, 216L: 267
|
6 |
Wehmöller M, Warnke P H, Zilian C, et al. Implant design and production—a new approach by selective laser melting [J]. Int. Congr. Ser., 2005, 1281: 690
|
7 |
Hollander D A, Wirtz T, Walter M V, et al. Development of individual three-dimensional bone substitutes using "selective laser melting" [J]. Eur. J. Trauma, 2003, 29: 228
|
8 |
Kruth J P, Vaerenbergh J V, Naert I, et al. Rapid manufacturing of dental prostheses by means of selective laser sintering/melting [J]. J. Dent. Technol., 2017, 24
|
9 |
Laoui T, Tolochko N K, Artushkevich A S, et al. Bone osseointegration tests performed on titanium dental root implants made by laser processing [J]. Int. J. Prod. Dev., 2004, 1: 165
|
10 |
Gebhardt A, Schmidt F M, Hötter J S, et al. Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry [J]. Phys. Proced., 2010, 5: 543
|
11 |
Sarker A, Tran N, Rifai A, et al. Angle defines attachment: switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting [J]. Mater. Des., 2018, 154: 326
|
12 |
Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V [J]. Mater. Sci. Eng., 2014, 616A: 1
|
13 |
Qiu C L, Adkins N J E, Attallah M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V [J]. Mater. Sci. Eng., 2013, 578A: 230
|
14 |
Vilaro T, Colin C, Bartout J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting [J]. Metall. Mater. Trans., 2011, 42A: 3190
|
15 |
Wu M W, Lai P H. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2016, 658A: 429
|
16 |
Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties [J]. J. Alloys Compd., 2012, 541: 177
|
17 |
Zhang Z X, Qu S J, Feng A H, et al. Hot deformation behavior of Ti-6Al-4V alloy: Effect of initial microstructure [J]. J. Alloys Compd., 2017, 718: 170
|
18 |
Yang J J. Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting [D]. Wuhan: Huazhong University of Science & Technology, 2017
|
|
杨晶晶. 激光选区熔化成形Ti-6Al-4V合金的组织演变及调控 [D]. 武汉: 华中科技大学, 2017
|
19 |
Roberts I A, Wang C J, Esterlein R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing [J]. Int. J. Mach. Tools Manufact., 2009, 49: 916
|
20 |
Zhang S Y, Lin X, Chen J, et al. Influence of heat treatment on the microstructure and properties of Ti-6Al-4V titanium alloy by laser rapid forming [J]. Rare Met. Mater. Eng., 2007, 36: 1263
|
|
张霜银, 林 鑫, 陈 静 等. 热处理对激光成形TC4合金组织及性能的影响 [J]. 稀有金属材料与工程, 2007, 36: 1263
|
21 |
Sercombe T, Jones N, Day R, et al. Heat treatment of Ti‐6Al‐7Nb components produced by selective laser melting [J]. Rapid Prototyp. J., 2008, 14: 300
|
22 |
Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti‐6Al‐4V alloy produced by selective laser melting of prealloyed powders [J]. Rap. Prototyp. J., 2010, 16: 450
|
23 |
Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Mater., 2010, 58: 3303
|
24 |
Bragg W L. The Diffraction of Short Electromagnetic Waves by A Crystal [M]. Cambridge: Cambridge University Press, 1913, 17: 43
|
25 |
Gerhard W, Boyer R R, Collings E W. Materials Properties Handbook: Titanium Alloys [M]. ASM International, 1994: 125
|
26 |
Gokcen N A. Binary Alloy Phase Diagrams [M]. Materials Park, Ohio: ASM International, 1990: 628
|
27 |
Rietveld H M. A profile refinement method for nuclear and magnetic structures [J]. J. Appl. Crystallogr., 1969, 2: 65
|
28 |
Schreiner W N. A standard test method for the determination of RIR values by X-Ray diffraction [J]. Powder Diffr., 1995, 10: 25
|
29 |
Buerger M J. Reduced cells [J]. Zeitschr. Für Kristall., 1957, 109: 42
|
30 |
Xiao Z N, Liu T T, Liao W H, et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment [J]. Chin. J. Laser, 2017, 44: 9
|
|
肖振楠, 刘婷婷, 廖文和 等. 激光选区熔化成形TC4钛合金热处理后微观组织和力学性能 [J]. 中国激光, 2017, 44: 9
|
31 |
Bérubé L P, L'Espérance G. A quantitative method of determining the degree of texture of zinc electrodeposits [J]. J. Electrochem. Soc., 1989, 136: 2314
|
32 |
Shen C, Xue Y J, Ku X C, et al. Effect of ultrasonic on microstructure and microhardness of Ni-ZrO2 nanocomposite coating [J]. Mater. Mech. Eng., 2010, 34(7): 80
|
|
申 晨, 薛玉君, 库祥臣 等. 超声波对Ni-ZrO2纳米复合镀层微观结构和显微硬度的影响 [J]. 机械工程材料, 2010, 34(7): 80
|
33 |
Antonysamy A A. Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications [D]. Manchester: University of Manchester, 2012
|
34 |
Li W Y, Chen Z Y, Liu J R, et al. Effect of texture on anisotropy at 600℃ in a near-α titanium alloy Ti60 plate [J]. Mater. Sci. Eng., 2017, 688A: 322
|
35 |
Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790
|
36 |
Ma Y, Du Z X, Cui X M, et al. Effect of cold rolling process on microstructure and mechanical properties of high strength β titanium alloy thin sheets [J]. Prog. Nat. Sci., 2018, 28: 711
|
37 |
Song X, Liu R. Microstructures and tensile behavior of 3D printed Ti-6Al-4V alloy sintered by electron beam melting: an experimental study [J]. Chin. J. Vac. Sci. Technol, 2020, 40: 103
|
|
宋 新, 刘 锐. 3D打印成形Ti-6Al-4V合金的组织和力学性能分析 [J]. 真空科学与技术学报, 2020, 40: 103
|
38 |
Zou T, Zhang M, Chen C J, et al. Study on the microstructure of Ti6Al4V alloy prepared by laser additive manufacturing (3D printing) [J]. Appl. Laser, 2016, 36: 286
|
|
邹 涛, 张 敏, 陈长军 等. 激光增材制造 (3D 打印) 制备钛合金的微观组织研究 [J]. 应用激光, 2016, 36: 286
|
39 |
Li Y. Study on the process and properties of porous metal prepared by laser additive manufacturing(3D printing) [D]. Suzhou: Soochow University, 2015
|
|
李 洋. 激光增材制造(3D打印)制备生物医用多孔金属工艺及组织性能研究 [D]. 苏州: 苏州大学, 2015
|
40 |
Wang W. Research on ill bonding of Ti-6Al-4V titanium alloy in laser rapid repair processing [D]. Xi'an: Northwestern Polytechnical University, 2007
|
|
王 维. TC4合金激光快速修复过程中熔合不良缺陷的评价研究 [D]. 西安: 西北工业大学, 2007
|
41 |
Tang Q. Research on defects formation mechanism of titanium alloy in electron beam freeform fabrication [D]. Wuhan: Huazhong University of Science and Technology, 2015
|
|
汤 群. 钛合金电子束快速成形缺陷形成机理研究 [D]. 武汉: 华中科技大学, 2015
|
42 |
Liu Z. The microstructure and tensile behavior of TC4 titanium alloy produced via electron beam rapid manufacturing [D]. Hefei: University of Science and Technology of China, 2019
|
|
刘 征. 电子束熔丝成形TC4合金的组织和拉伸力学行为研究 [D]. 合肥: 中国科学技术大学, 2019
|
43 |
Chen Z R, Ji X, Chu R K, et al. Effect of heat treatment on microstructure and properties of TC4 titanium alloy by laser melting deposition [J]. Heat Treat. Met., 2018, 43(11): 144
|
|
陈志茹, 计 霞, 楚瑞坤 等. 热处理工艺对激光熔化沉积TC4钛合金组织性能的影响 [J]. 金属热处理, 2018, 43(11): 144
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|