Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (11): 850-856    DOI: 10.11901/1005.3093.2020.444
ARTICLES Current Issue | Archive | Adv Search |
Effect of Fe Microalloying on Plastic Deformation Behavior of Cu-Zr-Al Metallic Glasses
XING Dong1, CHEN Shuangshuang1,2(), SONG Peidi1, QI Kai1, YIN Jun1, LI Weihuo1,2
1.School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
2.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Ministry of Education, Ma'anshan 243002, China
Cite this article: 

XING Dong, CHEN Shuangshuang, SONG Peidi, QI Kai, YIN Jun, LI Weihuo. Effect of Fe Microalloying on Plastic Deformation Behavior of Cu-Zr-Al Metallic Glasses. Chinese Journal of Materials Research, 2021, 35(11): 850-856.

Download:  HTML  PDF(7802KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu(47.8-x)Zr46.2Al6Fex (x=0, 0.8, 1.2, 1.6) alloy were prepared by copper-mold injection casting method and the effect of Fe microalloying on the glass-forming ability and mechanical properties of Cu(47.8-x)Zr46.2Al6Fex (x=0, 0.8, 1.2, 1.6) metallic glasses were investigated. The results show that the glass-forming ability of the alloy decreases with increasing of Fe content, while the plastic deformation ability at room temperature increases obviously. It is found that with the increase of minor Fe content more free volume will be introduced into the glassy matrix, and the inhomogeneity of composition and free volume distribution in the matrix will increase as a result of the positive mixing enthalpy of Fe and Cu. These factors jointly result in enhanced plasticity of metallic glass with high Fe content.

Key words:  metallic materials      bulk metallic glasses      glass-forming ability      heat of mixing      room -temperature plasticity      free volume     
Received:  26 October 2020     
ZTFLH:  TB331  
Fund: Natural Science Foundation of Anhui Province(1908085ME147);International Cooperation and Exchanges in Anhui Provincial Key Project of Research(202004b11020010);Natural Science Foundation of Anhui Provincial Education Department(KJ2020A0262)
About author:  CHEN Shuangshuang, Tel: (0555)2311570, E-mail: sschen1117@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.444     OR     https://www.cjmr.org/EN/Y2021/V35/I11/850

Fig.1  Relationship of heat of mixing (kJ/mol) among constituent elements in Cu-Zr-Al-Fe alloy system[16]
Fig.2  XRD patterns of as-cast Cu(47.8-x)Zr46.2Al6Fex (x=0, 0.8, 1.2, 1.6) alloy specimens with diameter of 2 mm
Fig.3  DSC curves of Fe0、Fe0.8 and Fe1.2 BMGs with a diameter of 2 mm
BMGs/%, atomic fraction

Tg

/K

Tx

/K

ΔTx

/K

Tm

/K

Tl

/K

Trgγ

D

/mm

Fe069476167114211750.5910.4072
Fe0.870076262114612070.5800.4002
Fe1.270576459113712180.5790.3972
Table 1  Summary of thermal parameters of the Fe0、Fe0.8 and Fe1.2 BMGs
Fig.4  Engineering stress-strain curves for the Fe0、Fe0.8 and Fe1.2 BMGs under compressive testing (a) and the enlarged serrated flow in region "I" in Fig.4a (b)
BMGs/%,atomic fraction

σy

/MPa

σb

/MPa

εe

/%

εp

/%

εt

/%

Fe0182418992.030.212.24
Fe0.8183219691.874.596.46
Fe1.2176019051.957.239.18
Table 2  Compressive mechanical properties of Fe0、Fe0.8 and Fe1.2 BMGs, including yield stress σy, compressive strength σb, elastic strain εe, plastic strain εpand total strain εt
Fig.5  Percentage of stress drop in Fe0.8 and Fe1.2 BMGs (a,b) and density of elastic energy dissipated in the shear band for the Fe0.8 and Fe1.2 BMGs varied with machine stiffness (c)
Fig.6  SEM images of the outer appearance (a, b) and fracture surface (c, d) of Fe0.8 and Fe1.2 BMGs
Fig.7  HRTEM image (a) and corresponding FFT pattern (b) of the deformed Fe1.2 BMG specimen
Fig.8  Thermal behavior of Fe0.8 and Fe1.2 BMGs before glass transition temperature
Fig.9  Line chart of hardness changes of Fe0、Fe0.8 and Fe1.2 BMGs
1 Hufnagel T C, Schuh C A, Falk M L. Deformation of metallic glasses: recent developments in theory, simulations, and experiments [J]. Acta Mater., 2016, 109: 375
2 Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys [J]. Acta Mate., 2011, 59: 2243
3 Sun L G, Wu G, Wang Q, et al. Nanostructural metallic materials: structures and mechanical properties [J]. Mater. Today, 2020, 38: 114
4 Liu L C, Hasan M, Kumar G. Metallic glass nanostructures: fabrication, properties, and applications [J]. Nanoscale, 2014, 6: 2027
5 Li H X, Lu Z C, Wang S L, et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications [J]. Prog. Mater. Sci., 2019, 103: 235
6 Sun B A, Wang W H. The fracture of bulk metallic glasses [J]. Prog. Mater. Sci., 2015, 74: 211
7 Kim D H, Kim W T, Park E S, et al. Phase separation in metallic glasses [J]. Prog. Mater. Sci., 2013, 58: 1103
8 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, 44R: 45
9 Kim Y C, Na J H, Park J M, et al. Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses [J]. Appl. Phys. Lett., 2003, 83: 3093
10 Pan J, Chan K C, Chen Q, et al. Enhanced plasticity by introducing icosahedral medium-range order in ZrCuNiAl metallic glass [J]. Intermetallics, 2012, 24: 79
11 Gao J H, Sharp J, Guan D K, et al. New compositional design for creating tough metallic glass composites with excellent work hardening [J]. Acta Mater., 2015, 86: 208
12 Li Z K, Fu H M, Sha P F, et al. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites [J]. Sci. Rep., 2015, 5: 8967
13 Oh J C, Ohkubo T, Kim Y C, et al. Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass [J]. Scr. Mater., 2005, 53: 165
14 Yao K F, Ruan F, Yang Y Q, et al. Superductile bulk metallic glass [J]. Appl. Phys. Lett., 2006, 88: 122106
15 Chen S S, Todd I. Enhanced plasticity in the Zr-Cu-Ni-Al-Nb alloy system by in-situ formation of two glassy phases [J]. J. Alloys Compd., 2015, 646: 973
16 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
17 Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metall., 1977, 25: 407
18 Argon A S. Plastic deformation in metallic glasses [J]. Acta Metall., 1979, 27: 47
19 Charalambides M N, Goh S M, Wanigasooriya L, et al. Effect of friction on uniaxial compression of bread dough [J]. J. Mater. Sci., 2005, 40: 3375
20 Sun B A, Pauly S, Hu J, et al. Origin of intermittent plastic flow and instability of shear band sliding in bulk metallic glasses [J]. Phys. Rev. Lett., 2013, 110: 225501
21 Sun B A, Yu H B, Jiao W, et al. Plasticity of ductile metallic glasses: a self-organized critical state [J]. Phys. Rev. Lett., 2010, 105: 035501
22 Lewandowski J J, Greer A L. Temperature rise at shear bands in metallic glasses [J]. Nat. Mater., 2006, 5: 15
23 Wu F F, Zheng W, Wu S D, et al. Shear stability of metallic glasses [J]. Int. J. Plast., 2011, 27: 560
24 Wright W J, Schwarz R B, Nix W D. Localized heating during serrated plastic flow in bulk metallic glasses [J]. Mater. Sci. Eng., 2001, 319-321A: 229
25 Liu C T, Heatherly L, Horton J A, et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys [J]. Metall. Mater. Trans., 1998, 29A: 1811
26 White S H, Burrows S E, Carreras J, et al. On mylonites in ductile shear zones [J]. J. Struct. Geol., 1980, 2: 175
27 Chen M W, Inoue A, Zhang W, et al. Extraordinary plasticity of ductile bulk metallic glasses [J]. Phys. Rev. Lett., 2006, 96: 245502
28 Chen S S, Zhang H R, Todd I. Phase-separation-enhanced plasticity in a Cu47.2Zr46.5Al5.5Nb0.8 bulk metallic glass [J]. Scr. Mater., 2014, 72-73: 47
29 Chen L Y, Fu Z D, Zhang G Q, et al. New class of plastic bulk metallic glass [J]. Phys. Rev. Lett., 2008, 100: 075501
30 Li Y H, Zhang W, Dong C, et al. Unusual compressive plasticity of a centimeter-diameter Zr-based bulk metallic glass with high Zr content [J]. J. Alloys Compd., 2010, 504S: S2
31 Mondal K, Ohkubo T, Toyama T, et al. The effect of nanocrystallization and free volume on the room temperature plasticity of Zr-based bulk metallic glasses [J]. Acta Mater., 2008, 56: 5329
32 Slipenyuk A, Eckert J. Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10-Ni5 metallic glass [J]. Scr. Mater., 2004, 50: 39
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!