Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (4): 271-276    DOI: 10.11901/1005.3093.2020.248
ARTICLES Current Issue | Archive | Adv Search |
Fatigue Property of Friction Stir Welded 6005A Al Alloy Profiles
REN Yanjing1, ZHANG Xinmeng1, XUE Peng2(), NI Dingrui2, XIAO Bolv2, MA Zongyi2
1.CRRC Changchun Railway Vehicles Co. Ltd. , Changchun 130062, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

REN Yanjing, ZHANG Xinmeng, XUE Peng, NI Dingrui, XIAO Bolv, MA Zongyi. Fatigue Property of Friction Stir Welded 6005A Al Alloy Profiles. Chinese Journal of Materials Research, 2021, 35(4): 271-276.

Download:  HTML  PDF(2679KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

6005A-T6 Al-alloy profiles were subjected to friction stir welding (FSW) at a high welding speed of 1000 mm/min, while the effect of mechanical grinding of the butt face on the microstructure and mechanical properties of the butt joints was investigated. The results show that the microstructure of “S” line is more obvious in the FSW joint with unpolished surface, compared to that of the traditional FSW joint with polished surface. Both FSW joints exhibited similar microhardness distribution and tensile properties, and all the samples failed at the lowest hardness zones, i.e., the heat affected zone (HAZ), during tensile tests. The fatigue properties are almost the same for both FSW joints with unpolished and polished surfaces, while the fatigue strength was 105 MPa and 110 MPa, respectively. At high stress amplitudes the samples fractured at the base material, but the sample failed at the HAZ at a low stress amplitude of 120 MPa, and two crack initiation zones were found. All of the fracture surfaces exhibited typical three zones, namely crack source zone, propagation zone and final fracture zone. The results indicate that the static tensile and dynamic fatigue properties of FSW joints were not affected by the surface mechanical polishing.

Key words:  metallic materials      6005A Al alloys      friction stir welding      microstructure      fatigue property     
Received:  22 June 2020     
ZTFLH:  TG457  
Fund: National Natural Science Foundation of China(U1760201)
About author:  XUE Peng, Tel: (024)83978630, E-mail: pxue@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.248     OR     https://www.cjmr.org/EN/Y2021/V35/I4/271

MaterialMgSiFeCuMnCrZnTiAl
6005A-T60.4~0.70.5~0.90.350.30.50.30.20.1Bal.
Table 1  Chemical composition of 6005A-T6 Al alloy (mass fraction, %)
Fig.1  Schematic of FSW process of 6005A-T6 Al profiles
Fig.2  Macrostructure of FSW joints (a) unpolished before welding, (b) polished before welding
Fig.3  Microhardness curves of 6005A-T6 Al alloy FSW joints
SamplesTensile propertiesFatigue strength/MPa
Yield strength/MPaUltimate tensile strength/MPaElongation/%
Unpolished2632895.3105
Polished2612833.8110
Table 2  Tensile and fatigue properties of FSW 6005A-T6 Al alloy joints
Fig.4  S-N curves of 6005A-T6 Al alloy FSW joints (a) unpolished before welding, (b) polished before welding
Fig.5  Cross-sectional macrostructures of fatigue fractured FSW joints unpolished before welding (a) failed at base material, (b) failed at heat affected zone, (c) cross-sectional macrostructures of FSW joint in (b)
Fig.6  Typical appearance of fracture of FSW joint unpolished before welding tested at a high stress amplitude of 180 MPa (a) macrostructure, (b) crack source zone, (c) propagation zone, (d) final fracture zone
Fig.7  Typical appearance of fracture of FSW joint unpolished before welding tested at a low stress amplitude of 120 MPa (a) macrostructure, (b) crack source zone, (c) propagation zone, (d) final fracture zone
1 Liu J A, Xie J X. Extrusion Technology and Die Optimization Design of Large Aluminum Alloy Profile [M]. Beijing: Metallurgical Industry Press, 2003
刘静安, 谢建新. 大型铝合金型材挤压技术与工模具优化设计 [M]. 北京: 冶金工业出版社, 2003
2 Lin S C. Extrusion technology of 6005A aluminum alloy profile used for CRH high-speed train vehicle [J]. Light Alloy Fabrication Technol., 2012, 40(3): 45
林树春. 动车组高速列车用6005A铝合金车体型材挤压工艺 [J]. 轻合金加工技术, 2012, 40(3): 45
3 Duan C X, Tang J G, Ma W J, et al. Intergranular corrosion behavior of extruded 6005A alloy profile with different microstructures [J]. J. Mater. Sci., 2020, 55: 10833
4 Yu Z K, Liu C N, Niu X J, et al. Optimization of friction stir welding process for 6005A-T6 Al alloy extrusions [J]. Electr. Weld. Mach., 2018, 48(3): 191
郁志凯, 刘春宁, 钮旭晶等. 6005A-T6铝合金型材搅拌摩擦焊工艺参数优化 [J]. 电焊机, 2018, 48(3): 191
5 Zhang X M, He G Z, Wang B B, et al. Influence of oxide film on fatigue property of friction stir welded 6082 Al alloy [J]. Chin. J. Mater. Res., 2019, 33: 299
张欣盟, 何广忠, 王贝贝等. 氧化膜对6082铝合金搅拌摩擦焊接头疲劳性能的影响 [J]. 材料研究学报, 2019, 33: 299
6 Xue P, Zhang X X, Wu L H, et al. Research progress on friction stir welding and processing [J]. Acta Metall. Sin., 2016, 52: 1222
薛鹏, 张星星, 吴利辉等. 搅拌摩擦焊接与加工研究进展 [J]. 金属学报, 2016, 52: 1222
7 Sato Y S, Yamashita F, Sugiura Y, et al. FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminium alloy [J]. Scr. Mater., 2004, 50: 365
8 Zhou C Z, Yang X Q, Luan G H. Effect of oxide array on the fatigue property of friction stir welds [J]. Scr. Mater., 2006, 54: 1515
9 Liu X Q, Liu H J, Wang T H, et al. Correlation between microstructures and mechanical properties of high-speed friction stir welded aluminum hollow extrusions subjected to axial forces [J]. J. Mater. Sci. Technol., 2018, 34: 102
10 Wang G Q, Zhao Y H, Hao Y F. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing [J]. J. Mater. Sci. Technol., 2018, 34: 73
11 Wang B B, Chen F F, Liu F, et al. Enhanced mechanical properties of friction stir welded 5083Al-H19 joints with additional water cooling [J]. J. Mater. Sci. Technol., 2017, 33: 1009
12 Liu F C, Ma Z Y. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy [J]. Metall. Mater. Trans., 2008, 39A: 2378
13 Yang C, Zhang J F, Ma G N, et al. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates [J]. J. Mater. Sci. Technol., 2020, 41: 105
14 Sheng X F, Li K, Wu W K, et al. Microstructure and mechanical properties of friction stir welded joint of an aluminum alloy sheet 6005A-T4 [J]. Metals, 2019, 9: 1152
15 Feijoo I, Cabeza M, Merino P, et al. Age hardening of extruded AA 6005A aluminium alloy powders [J]. Materials, 2019, 12: 2316
16 Wang C, Wang B B, Xue P, et al. Fatigue behavior of friction stir welded SiCp/6092Al composite [J]. Acta Metall. Sin., 2019, 55: 149
王晨, 王贝贝, 薛鹏等. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究 [J]. 金属学报, 2019, 55: 149
17 Yang C, Wang B B, Yu B H, et al. High-cycle fatigue and fracture behavior of double-side friction stir welded 6082Al ultra-thick plates [J]. Eng. Fract. Mech., 2020, 226: 106887
18 Zeng X H, Xue P, Wang D, et al. Effect of processing parameters on plastic flow and defect formation in friction-stir-welded aluminum alloy [J]. Metall. Mater. Trans., 2018, 49A: 2673
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!