Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (4): 251-258    DOI: 10.11901/1005.3093.2020.244
ARTICLES Current Issue | Archive | Adv Search |
Sand-burning Reaction of Ceramic Shell for Directional Solidification of Nickel-based Superalloy
SHI Zhenwei1,2(), ZHENG Wei1, LU Yuzhang1, ZHANG Gong1, SHEN Jian1()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
Cite this article: 

SHI Zhenwei, ZHENG Wei, LU Yuzhang, ZHANG Gong, SHEN Jian. Sand-burning Reaction of Ceramic Shell for Directional Solidification of Nickel-based Superalloy. Chinese Journal of Materials Research, 2021, 35(4): 251-258.

Download:  HTML  PDF(19184KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of the particle size ratio of the ceramic shell for directional solidification of superalloy and the Cr2O3 additive on the surface quality of castings was investigated by means of multi-index orthogonal experiment and the range analysis while taking the sand-burning on the surface quality and roughness of the resulted castings as the calibration. The results show that the main components of the sand-burning layer on the casting surface includes Al2O3 and elements Cr, Ni of the alloy. Adjusting the particle size gradation can reduce the porosity of the ceramic shell surface layer and then yield a dense shell surface layer, thereby reducing the penetration of the molten alloy into the ceramic shell surface layer during the directional solidification process and reducing the physical adhering sand on the surface of the casting. The addition of Cr2O3 additive can induce the reaction of Cr2O3 with Al2O3 in the shell resulting in the formation of the binary compound Al2O3-Cr2O3 or ternary compound Al2O3-SiO2-Cr2O3, which can inhibit the active elements (Ni, Ti, Al, etc.) in the casting react with free SiO2 in the ceramic shell to reduce the formation of Al2O3 on the casting surface, thereby reducing the chemical adhering sand on the casting surface and improving the casting surface quality.

Key words:  metallic materials      sand-burning reactions      ceramic shell      orthogonal experiment      superalloy     
Received:  19 June 2020     
ZTFLH:  TG245  
Fund: National Natural Science Foundation of China(51631008);National Science and Technology Major Project(2017-VII-0008-0101);Key Deployment Projects of the Chinese Academy of Sciences(ZDRW-CN-2019-01)
About author:  SHI Zhenwei, Tel: 18655950521, E-mail: 785251495@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.244     OR     https://www.cjmr.org/EN/Y2021/V35/I4/251

CCrCoWMoAlTiTaNi
0.112.09.04.02.03.44.04.9Bal.
Table 1  Nominal compositions of nickel-based superalloy(mass fraction, %)
Al2O3SiO2Fe2O3Na2O
95.154.070.060.19
Table 2  Chemical composition of EC95 powders (mass fraction, %)
PowderD10/μmD50/μmD90/μm
W71.306.6911.26
W145.5512.3320.86
W281.6422.7067.56
Cr2O30.891.984.97
Table 3  Particle size distribution of ceramic shell surface powders
LevelFactor

A

(Fine powder)

B(W28)

C

(Cr2O3/kg)

D

(Temperature/℃)

11(W7)10.2900
21(W14)20.41000
3030.61100
Table 4  Factors and levels graph
No.

A

/kg

B

/kg

C

/kg

D

/℃

Results
Sand-burning proportion/%Surface roughness Ra/μmPorosity/%
1W75.05.00.29000.782.218.16
23.36.60.410002.512.067.92
32.57.50.611003.172.644.21
4W145.05.00.411006.152.7917.73
53.36.60.69004.742.0516.08
62.57.50.210002.712.9014.26
7-10.00.610004.363.2717.31
810.00.211003.101.9323.74
910.00.49006.662.8126.22
Table 5  Experiment scheme and results
IndicatorFactorK1K2K3R
Sand-burning proportion/%A6.4613.6014.127.66
B11.2910.3512.542.19
C6.5915.3212.278.73
D12.189.5812.422.84
Surface roughness Ra/μmA6.917.758.001.09
B8.276.048.352.31
C7.047.667.950.91
D7.078.237.361.16
Porosity/%A20.2948.0767.2746.98
B43.2047.7444.694.54
C46.1651.8737.6014.27
D50.4639.4945.6810.97
Table 6  Range analysis of various indicators
Fig.1  Porosity of ceramic shell surface
Fig.2  Microstructures of ceramic shell surface (a) optimization shell and (b) regular shell
Fig.3  Surface of casting. (a) casting with optimization shell and (b) casting with regular shell
Fig.4  SEM and EDS analysis of sand-burning layer on casting surface. (a) micromorphology, (b) Al element, (c) O element, (d) Si element and (e) EDS elemental analysis
Fig.5  Cross section SEM images of casting surface layer. (a) sand-burning layer on casting surface of regular shell, (b) sand-burning layer on casting surface of optimization shell, (c) smooth area of casting surface of regular shell, (d, e) EDS surface scan of the smooth area of conventional casting shell casting and (f) smooth area of casting surface of optimization shell
Fig.6  Ceramic shell surface and XRD pattern of shell surface (a) ceramic shell surface, (b) XRD pattern of shell surface
Fig.7  EDS line scan of the sand-burning layer
ReactionsGf at 1800 K/kJ·mol-1
2Al+Cr2O3→Al2O3+2Cr-221.7
4Al+3SiO2→ 2Al2O3+3Si-105.3
Ti+SiO2→ TiO2+Si-47.6
Table 7  Gibbs free energy of related interfacial reaction
1 Shi C X, Zhong Z Y. Fifty Years of Surperalloy R&D in China 1956-2006 [M]. Beijing: Metallurgical Industry Press, 2006
师昌绪, 仲增墉. 中国高温合金五十年1956-2006 [M]. 北京: 冶金工业出版社, 2006
2 Liu L. The progress of investment casting of nickel-based superalloys [J]. Foundry, 2012, 61: 1273
刘林. 高温合金精密铸造技术研究进展 [J]. 铸造, 2012, 61: 1273
3 Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
4 Li A L, Cao L M, Xue M, et al. Study on interface behavior between single crystal alloy/Al2O3 mould shell [J]. Met. Hotwork. Technol., 2007, 36(5): 48
李爱兰, 曹腊梅, 薛明等. 单晶高温合金/Al2O3型壳界面行为研究 [J]. 热加工工艺, 2007, 36(5): 48
5 Zhang X F, Zhang F, Guo F F. Discussion about mechanism of sand adhering to casting parts and its quality control [J]. Hebei Metall., 2007, (2): 43
张学锋, 张方, 郭芳芳. 铸件粘砂机理及其质量控制浅析 [J]. 河北冶金, 2007, (2): 43
6 Venkat Y, Singh S, Das D K, et al. Effect of fine alumina in improving refractoriness of ceramic shell moulds used for aeronautical grade Ni-base Superalloy castings [J]. Ceram. Int., 2018, 44: 12030
7 Zhou P P, Wu G Q, Tao Y, et al. Microstructures and performance of CaO-based ceramic cores with different particle size distributions for investment casting [J]. Mater. Res. Express, 2018, 5: 025202
8 Qin Y X, Du A B, Zhang R, et al. Alumina-based ceramic core nano-composites for investment casting [J]. Rare Met. Mater. Eng., 2007, 36: 774
覃业霞, 杜爱兵, 张睿等. 精密铸造用氧化铝基复合陶瓷型芯 [J]. 稀有金属材料与工程, 2007, 36: 774
9 Wang R F, Liu Z Y, Lin M, et al. The effect of different minerals on the property of alumina ceramic cores [J]. Mater. Rev., 2012, 26(20): 115
王荣峰, 刘志义, 林茂等. 不同矿化剂对铝基陶瓷型芯性能的影响 [J]. 材料导报, 2012, 26(20): 115
10 Zhang L T, Cao L M, Liu G L, et al. Theory and Practice of Near Net-Shape Investment Casting [M]. Beijing: National Defense Industry Press, 2007
张立同, 曹腊梅, 刘国利等. 近净形熔模精密铸造理论与实践 [M]. 北京: 国防工业出社, 2007
11 Liu X F, Guo W J, Lou Y C, et al. Metal-mold reaction and heat conductivity of ceramic shell mold employed in directional solidification of nickel-base Superalloys [J]. Foundry, 2010, 59: 1293
刘孝福, 郭伟杰, 娄延春等. 高温合金定向凝固用陶瓷型壳的铸型反应和导热性 [J]. 铸造, 2010, 59: 1293
12 Simmonds S. Formation and avoidance of surface defects during casting and heat-treatment of single-crystal nickel-based Superalloys [D]. England: University of Leicester, 2014
13 Yao J S, Tang D Z, Liu X G, et al. Interaction between two Ni-base alloys and ceramic Moulds [J]. Mater. Sci. Forum, 2013, 747-748: 765
14 Li Q, Song J X, Wang D G, et al. Effect of Cr, Hf and temperature on interface reaction between nickel melt and silicon oxide core [J]. Rare Met., 2010, 30: 405
15 Chen X Y, Jin Z, Bai X F, et al. Effect of C on the interfacial reaction and wettability between A Ni-based Superalloy and ceramic Mould [J]. Acta Metall. Sin., 2015, 51: 853
陈晓燕, 金喆, 白雪峰等. C对一种镍基高温合金与陶瓷型壳界面反应及润湿性的影响 [J]. 金属学报, 2015, 51: 853
16 Reed R C. The Superalloys: Fundamentals and Applications [M]. New York: Cambridge University Press, 2006
17 Liang Y J, Che Y C. Thermochemical Data of Inorganics [M]. Shenyang: Northeastern University Press, 1993
梁英教, 车荫昌. 无机热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!