Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (2): 110-114    DOI: 10.11901/1005.3093.2020.208
ARTICLES Current Issue | Archive | Adv Search |
Properties of ZnO Varistor Ceramics Co-doped with B2O3 and Al2O3
WANG Hao1, ZHAO Hongfeng1(), KANG Jiashuang1, ZHOU Yuanxiang2, XIE Qingyun3
1.The Wind Solar Storage Division of State Key Laboratory of Control and Simulation of Power System and Generation Equipment, School of Electrical Engineering, Xinjiang University, Urumqi 830046, China
2.State Key Laboratory of Power System and Power Generation Equipment Control and Simulation, Department of Electrical Engineering and Applied Electronics Technology, Tsinghua University, Beijing 100084, China
3.Xidian Surge Arrester Co. Ltd. , Xi'an 710200, China
Cite this article: 

WANG Hao, ZHAO Hongfeng, KANG Jiashuang, ZHOU Yuanxiang, XIE Qingyun. Properties of ZnO Varistor Ceramics Co-doped with B2O3 and Al2O3. Chinese Journal of Materials Research, 2021, 35(2): 110-114.

Download:  HTML  PDF(2849KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of B2O3 (B) and Al2O3 (Al) co-doping on electrical properties and microstructure of ZnO varistor ceramics are investigated. ZnO varistors doped with B and Al have excellent electrical properties such as low leakage current, high nonlinearity and low residual voltage. The electrical parameters of the ZnO varistor ceramics doped with 3.0% B and 0.015% Al(mole fraction)are as follows: breakdown voltage E1 mA=475 V/mm; leakage current JL=0.16 μA/cm2; nonlinear coefficient α=106; residual voltage ratio K=1.57.

Key words:  inorganic non-metallic materials      ZnO varistor ceramics      electrical properties      microstructure     
Received:  02 June 2020     
ZTFLH:  TM283  
Fund: National Natural Science Foundation of China(51762038)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.208     OR     https://www.cjmr.org/EN/Y2021/V35/I2/110

B content

/%, mole fraction

d

/μm

Nd

/1027m-3

Ni

/1018m-2

Φb

/eV

Eb

/V·mm-1

JL

/μA·cm-2

αKGrain boundary resistance/kΩ
0.06.581.861.811.664704.06511.5729.69
1.56.611.982.031.984742.52671.5845.14
3.06.622.592.862.984750.161061.5774.68
4.56.662.232.272.174790.25861.5952.53
Table 1  Electrical properties and microstructure parameters of samples with different B doping amounts
Fig.1  E-J diagrams of samples with different B doping amounts: (a) E-J curve and (b) enlarged view at inflection point
Fig.2  C-V curves of samples with different B doping amounts (mole fraction)
Fig.3  SEM images of samples with different B doping amounts (a) 0.0%, (b) 1.5%, (c) 3.0%, (d) 4.5%
Fig.4  Energy-dispersive X-ray spectral image of a typical sample: (a) measurement path and (b) element intensity
Fig.5  Density-non-linear line graph of samples with different B doping levels
Fig.6  XRD diffraction patterns of samples with different B doping amounts
Fig.7  Impedance equivalent circuit diagram (a) and complex impedance image of samples with different B doping amounts (b)
1 Levinson L M, Philipp H R. The physics of metal oxide varistors [J]. J. Appl. Phys., 1975, 46: 1332
2 Gupta T K. Application of zinc oxide varistors [J]. J. Am. Ceram. Soc., 1990, 73: 1817
3 Pillai S C, Kelly J M, Ramesh R, et al. Advances in the synthesis of ZnO nanomaterials for varistor devices [J]. J. Mater. Chem. C, 2013, 1: 3268
4 Pike G E, Seager C H. The dc voltage dependence of semiconductor grain‐boundary resistance [J]. J. Appl. Phys., 1979, 50: 3414
5 Winston R A, Cordaro J F. Grain‐boundary interface electron traps in commercial zinc oxide varistors [J]. J. Appl. Phys., 1990, 68: 6495
6 Li S T, Liu F Y, Jin H Y. High-temperature pyroelectricity of ZnO varistor ceramics [J]. Chin. J. Mater. Res., 1996, 10: 170
李盛涛, 刘辅宜, 金海云. ZnO压敏陶瓷的高温热释电现象 [J]. 材料研究学报, 1996, 10: 170
7 Lee Y S, Tseng T Y. Phase identification and electrical properties in ZnO-Glass varistors [J]. J. Am. Ceram. Soc., 1992, 75: 1636
8 Huang J L, Li K B. The effects of heat treatment on B2O3-contained ZnO varistor [J]. J. Mater. Res., 1994, 9: 1526
9 Liu F H, Xu G J, Duan L, et al. Effect of B2O3 doping on the microstructure and electrical properties of ZnO-based varistors [J]. Key Eng. Mater., 2008, 368-372: 497
10 Wang Y P, Peng Z J, Feng H, et al. B2O3-doped ZnO-Pr6O11 based varistor ceramics [J]. Key Eng. Mater., 2012, 512-515: 1277
11 Shen J L, Jiang S L, Xu Y C, et al. Boron and sodium co-doped ZnO varistor with high stability of pulse current surge [J]. J. Alloys Compd., 2017, 728: 368
12 Lu Y C, Li Y X, Peng R, et al. Low‐temperature sintering and electrical properties of BBSZ glass‐doped ZnO‐based multilayer varistors [J]. Int. J. Appl. Ceram. Technol., 2020, 17: 722
13 Houabes M, Bernik S, Talhi C, et al. The effect of aluminium oxide on the residual voltage of ZnO varistors [J]. Ceram. Int., 2005, 31: 783
14 Long W C, Hu J, Liu J, et al. The effect of aluminum on electrical properties of ZnO varistors [J]. J. Am. Ceram. Soc., 2010, 93: 2441
15 Shen J L, Zhang Y J, Li M Y, et al. Effects of Fe and Al co-doping on the leakage current density and clamp voltage ratio of ZnO varistor [J]. J. Alloys Compd., 2018, 747: 1018
16 Lin W W, He X C, Xu Z J, et al. Influence of Bi2WO6 on electric properties of ZnO varistor ceramics [J]. Chin. J. Mater. Res., 2020, 34: 285
林文文, 贺笑春, 徐志军等. 添加Bi2WO6对ZnO基压敏陶瓷电学性能的影响 [J]. 材料研究学报, 2020, 34: 285
17 Bai H R, Li M M, Xu Z J, et al. Influence of SiO2 on electrical properties of the highly nonlinear ZnO-Bi2O3-MnO2 varistors [J]. J. Eur. Ceram. Soc., 2017, 37: 3965
18 Bai H R, Li M M, Xu Z J, et al. Influence of SiO2 on electrical properties of the highly nonlinear ZnO-Bi2O3-MnO2 varistors [J]. J. Eur. Ceram. Soc., 2017, 37: 3965
19 Nahm C W, Shin B C, Min B H. Microstructure and electrical properties of Y2O3-doped ZnO-Pr6O11-based varistor ceramics [J]. Mater. Chem. Phys., 2003, 82: 157
20 Lu Y C, Li Y X, Peng R, et al. Low‐temperature sintering and electrical properties of BBSZ glass‐doped ZnO‐based multilayer varistors [J]. Int. J. Appl. Ceram. Technol., 2020, 17: 722
21 Hu G L, Zhu J F, Yang H B, et al. Effect of Cr2O3 addition on the microstructure and electrical properties of SnO2-based varistor [J]. J. Mater. Sci.: Mater. Electron., 2012, 24: 1735
22 Clarke D R. Varistor ceramics [J]. J. Am. Ceram. Soc., 1999, 82: 485
23 Peiteado M, Iglesias Y, Caballero A C. Sodium impurities in ZnO-Bi2O3-Sb2O3 based varistors [J]. Ceram. Int., 2011, 37: 819
24 Cheng L H, Li G R, Yuan K Y, et al. Improvement in nonlinear properties and electrical stability of ZnO varistors with B2O3 additives by nano-coating method [J]. J. Am. Ceram. Soc., 2012, 95: 1004
25 Eda K. Conduction mechanism of non-Ohmic zinc oxide ceramics [J]. J. Appl. Phys., 1978, 49: 2964
26 Cheng L H, Li G R, Yuan K Y, et al. Improvement in nonlinear properties and electrical stability of ZnO varistors with B2O3 additives by nano‐coating method [J]. J. Am. Ceram. Soc., 2012, 95: 1004
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[10] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[11] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[15] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
No Suggested Reading articles found!