Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (8): 605-610    DOI: 10.11901/1005.3093.2020.063
ARTICLES Current Issue | Archive | Adv Search |
Effect of Dy Addition on Glass-forming Ability and Mechanical Properties of Cu50Zr46Al4 Bulk Metallic Alloy
LI Dongmei1, TAN Liming1, ZHAO Qing1, XIE Hanxi1, YU Peng1(), XIA Lei2
1 College of Physics and Electronic Engineering Chongqing Normal University, Chongqing Key Laboratory of Photo-Electric Functional Materials, Chongqing 401331, China
2 Laboratory for Microstructure & Institute of Materials, Shanghai University, Shanghai 200072, China
Cite this article: 

LI Dongmei, TAN Liming, ZHAO Qing, XIE Hanxi, YU Peng, XIA Lei. Effect of Dy Addition on Glass-forming Ability and Mechanical Properties of Cu50Zr46Al4 Bulk Metallic Alloy. Chinese Journal of Materials Research, 2020, 34(8): 605-610.

Download:  HTML  PDF(3891KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series of Cu50-xZr46Al4Dyx(x=0~4) alloys is prepared by copper mold casting based on Cu50Zr46Al4 bulk metallic glass (BMG). The effect of Dy addition on the glass forming ability and mechanical properties of Cu50-xZr46Al4Dyx alloy was investigated through thermodynamics and mechanical experiments. It is found that 1%~2% (atomic fraction) Dy addition can significantly improve the thermal stability of Cu50-xZr46Al4Dyx, and the glass forming ability of the alloy. The strength and plastic deformation ability of the alloy can be improved effectively by proper Dy addition. The influence of Dy addition on the glass forming ability and mechanical properties of Cu50-xZr46Al4Dyx is also discussed.

Key words:  metallic materials      Dy addition      micro-alloying      glass-forming ability      mechanical properties     
Received:  27 February 2020     
ZTFLH:  TB31  
Fund: Chongqing Research Program of Basic Research and Frontier Technology(cstc2018jcyjAX0329);Chongqing Research Program of Basic Research and Frontier Technology(cstc2018jcyjAX0444);the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K201900501)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.063     OR     https://www.cjmr.org/EN/Y2020/V34/I8/605

Fig.1  XRD patterns of Cu50-xZr46Al4Dyx(x=0~4)specimens with different diameters
Specimend=1.5 mmd=3.0 mmd=5.0 mm
Cu50Zr46Al4AA+C/
Cu49Zr46Al4Dy1AAA+C
Cu48Zr46Al4Dy 2AAA+C
Cu47Zr46Al4Dy 3AA+C/
Cu46Zr46Al4Dy 4A+C//
Table 1  Structures of Cu50-xZr46Al4Dyx (x=0, 1, 2, 3, 4) specimens with different diameters
Fig.2  Curves of (a) DSC and (b) DTA of Cu50-xZr46Al4Dyx(x=0, 1, 2, 3) BMG with a diameter of 1.5 mm under the heating rate of 20 K/min
SpecimenTg/KTx/KTm/KTx/Kγ
Cu50Zr46Al4698.5753.7995.655.20.445
Cu49Zr46Al4Dy1693.4755.6988.562.20.449
Cu48Zr46Al4Dy2685.3753.5993.468.20.449
Cu47Zr46Al4Dy3683.1747.1996.664.00.445
Table 2  Thermal parameters of Cu50-xZr46Al4Dyx(x=0~4) BMG with a diameter of 1.5 mm
Fig.3  Compressive stress-strain curves of Cu50-xZr46Al4Dyx(x=0~4)BMGs with a diameter of 1.5 mm at room temperature
Specimensσy / GPaσmax / GPaεy / %εf / %
Cu50Zr46Al41.3751.5382.210.49
Cu49Zr46Al4Dy11.6222.0622.117.62
Cu48Zr46Al4Dy21.5121.8662.144.52
Cu47Zr46Al4Dy31.3161.9212.246.36
Cu46Zr46Al4Dy41.2931.4012.151.29
Table 3  Compressive mechanical parameters of Cu50-xZr46Al4-Dyx(x=0~4) BMGswith a diameter of 1.5 mm at room temperature
Fig.4  Morphology of compressive fracture surfaces of Cu50-xZr46Al4Dyx(x=0~4) BMGs with a diameter of 1.5 mm
Fig.5  Vickers hardness values of Cu50-xZr46Al4Dyx(x=0~4) BMGs with diameters of 1.5 mm and 3 mm as a function of Dy concentration
[1] Xu D, Lohwongwatana B, Duan G, et al. Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass [J]. Acta Mater., 2004, 52(9): 2621
[2] Das J, Tang M B, Kim K B, et al. “Work-Hardenable” ductile bulk metallic glass [J]. Phys. Rev. Lett., 2005, 94(20): 205501
doi: 10.1103/PhysRevLett.94.205501 pmid: 16090260
[3] Yu P, Bai H Y, Tang M B, et al. CuZr-base bulk metallic glasses with good glass-forming ability prepared by Al addition [J]. Acta Phys. Sin., 2005, 54(07): 3284
(余鹏, 白海洋, 汤美波等.具有优良玻璃形成能力添加Al的CuZr基大块金属玻璃 [J]. 物理学报, 2005, 54(07): 3284)
[4] Das J, Kim K B, Xu W, et al. Ductile metallic glasses in supercooled martensitic alloys [J]. Mater. Trans., 2006, 47(10): 2606
[5] Kim T H, Lee S R, Bae K H, et al. Effects of Al/Cu co-doping on crystal structure and chemical composition of Nd-rich phases in Nd-Fe-B sintered magnet [J]. Acta Mater., 2017, 133: 200
[6] Zhou K, Liu Y, Pang S, et al. Formation and properties of centimeter-size Zr-Ti-Cu-Al-Y bulk metallic glasses as potential biomaterials [J]. J. Alloys Compd., 2016, 656: 389
[7] Chen W R, Wang Y M, Qiang J B. The electron concentration-constant and atomic size-constant criterion in Zr-based bulk metallic glasses [J]. Chin. J. Mater. Res., 2002, 16(2): 219
(陈伟荣, 王英敏, 羌建兵等. Zr基大块非晶合金成分的等电子浓度和等原子尺寸判据 [J].材料研究学报, 2002, 16(2): 219)
[8] Liu H B, Wang C S, Gao Y L, et al. Laser cladding amorphous composite coating of Cu-Zr-Al on magnesium alloy surface [J]. Chinese J. Lasers, 2006, 33(5): 709
(刘红宾, 王存山, 高亚丽等. 镁合金表面激光熔覆Cu-Zr-Al非晶复合涂层 [J].中国激光, 2006, 33(5): 709)
[9] Zhang Q, Zhang W, Inoue A. New Cu-Zr-based bulk metallic glasses with large diameters of up to 1.5 cm [J]. Scr. Mater., 2006, 55(08): 711
[10] Zhang W, Zhang Q, Inoue A. Synthesis and mechanical properties of new Cu-Zr-based glassy alloys with high glass-forming ability [J]. Adv. Eng. Mater., 2008, 10(11): 1034
[11] Zhang Q, Zhang W, Inoue A. Fabrication of new Cu34Pd2Zr48Ag8Al8 bulk glassy alloy with a diameter of 30 mm [J]. Mater. Trans., 2007, 48(11): 3031
[12] Haratian S, Haddad-Sabzevar M. Thermal stability and non-isothermal crystallization kinetics of Ti41.5Cu42.5Ni7.5Zr2.5Hf5Si1 bulk metallic glass [J]. J. Non-cryst. Solids, 2015, 429(1): 164
[13] Xu H, Du Y, Yu D. Effects of Y addition on structural and mechanical properties of CuZrAl bulk metallic glass [J]. T. Nonferr. Metal Soc., 2012, 22(04): 842
[14] Pan J, Chan K C, Chen Q, et al. The effect of microalloying on mechanical properties in CuZrAl bulk metallic glass [J]. J. Alloys Compd., 2010, 504: S74
[15] Xu X, Chen L Y, Zhang G Q, et al. Formation of bulk metallic glasses in Cu45Zr48-xAl7REx(RE=La, Ce, Nd, Gd and 0≤x≤5at.%) [J]. Intermetallics, 2007, 15(8): 1066
[16] Yao Z F, Qiao J C, Zhang C, et al. Non-isothermal crystallization transformation kinetics analysis and isothermal crystallization kinetics in super-cooled liquid region (SLR) of (Ce0.72Cu0.28)90-x-Al10Fex(x=0, 5 or 10) bulk metallic glasses [J]. J. Non-cryst. Solids, 2015, 415(1): 42
[17] Lee K S, Kim S, Lim K R, et al. Crystallization, high temperature deformation behavior and solid-to-solid formability of a Ti-based bulk metallic glass within supercooled liquid region [J]. J. Alloys Compd., 2016, 663(5): 270
[18] Zhou B W, Deng L, Zhang X G, et al. Enhancement of glass-forming ability and plasticity of Cu-rich Cu-Zr-Al bulk metallic glasses by minor addition of Dy [J]. J. Mater. Res., 2014, 29(12): 1362
[19] Qiao J C, Yao Y, Pelletier J M, et al. Understanding of micro-alloying on plasticity in Cu46Zr47-xAl7Dyx(0≤x≤8) bulk metallic glasses under compression: based on mechanical relaxations and theoretical analysis [J]. Int. J. Plastic., 2016, 82: 62
[20] Yu P, Bai H Y, Tang M B, et al. Excellent glass-forming ability in simple Cu50Zr50-based alloys [J]. J. Non-cryst. solids, 2005, 351(14-15): 1328
[21] He G, Chen G L. Intermetallics and formation of bulk glassy alloys [J]. Chin. J. Mater. Res., 1999, 13(6): 569
(何国, 陈国良. 金属间化合物与大块玻璃合金的形成 [J]. 材料研究学报, 1999, 13(6): 569)
[22] Wright W J, Saha R, Nix W D. Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass [J]. Mater. Trans., 2001, 42(04): 642
[23] Yang Y J, Kang F W, Xing D W, et al. Formation and mechanical properties of bulk Cu-Ti-Zr-Ni metallic glasses with high glass forming ability [J]. T. Nonferr. Metal Soc., 2007, 17(1): 16
[24] Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I [J]. Proc. R. Soc. London, Ser. A. Mathematical and Physical Sciences, 1950, 201(1065): 192
[25] Zhang Y, Chen J, Chen G L, et al. Glass formation mechanism of minor yttrium addition in CuZrAl alloys [J]. Appl. Phys. Lett., 2006, 89(13): 131904
[26] Schroers J, Johnson W L. Ductile Bulk Metallic Glass [J]. Phys. Rev. Lett., 2004, 93(25): 255506
doi: 10.1103/PhysRevLett.93.255506 pmid: 15697909
[27] Yang B, Li X, Luo Y D, et al. Effect of minor Sn and Nb additions on the thermal stability and compressive plasticity of Zr-Cu-Fe-Al bulk metallic glass [J]. Acta Metall. Sin., 2015, 51(4): 465
(杨滨, 李鑫, 罗文东等. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响 [J]. 金属学报, 2015, 51(4): 465)
[28] Tan J, Zhang Y, Sun B A, et al. Correlation between internal states and plasticity in bulk metallic glass [J]. Appl. Phys. Lett., 2011, 98(15): 151906
[29] Chen L Y, Setyawan A D, Kato H, et al. Free-volume-induced enhancement of plasticity in a monolithic bulk metallic glass at room temperature [J]. Scr. Mater., 2008, 59(1): 75
[30] Stolpe M, Kruzic J J, Busch R. Evolution of shear bands, free volume and hardness during cold rolling of a Zr-based bulk metallic glass [J]. Acta Mater., 2014, 64: 231
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!