Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (1): 57-63    DOI: 10.11901/1005.3093.2019.348
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of Epoxy Resin Composites Incorporated with Optical Fiber Preform Waste
SHI Congyun1(),WANG Jinfeng1,CHEN Hongxiang1,YANG Xumeng1,DU Changjun1,LI Guangyao1,LIU Peng1,CAI Haohao2
1. College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
2. Wuda Jucheng Structure Co. , Ltd, Wuhan 430223, China
Cite this article: 

SHI Congyun,WANG Jinfeng,CHEN Hongxiang,YANG Xumeng,DU Changjun,LI Guangyao,LIU Peng,CAI Haohao. Preparation and Properties of Epoxy Resin Composites Incorporated with Optical Fiber Preform Waste. Chinese Journal of Materials Research, 2020, 34(1): 57-63.

Download:  HTML  PDF(3169KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The optical fiber preform waste, an industrial by-product, was successively dried, crushed and grinded to produce fine particles, and then which are modified with coupling agents KH-570 and A-151 respectively to prepare KH-570/SiO2 and A-151/SiO2. Further, the prepared two powders were blended respectively with epoxy resin (EP) to prepare EP based composites. The results of hydrophobicity test, FT-IR and SEM show that the two coupling agents present significant modification effect on the waste particles, however the modification effect of A-151 is better. The overall tensile properties of the composites can be ranked as the following order: A-151/SiO2/EP>KH-570/SiO2/EP> unmodified powder/EP, and the tensile properties are the best when the powder mass fraction was 20%. The maximum tensile strength of the above three particles modified EPs is 49.37 MPa, 45.57 MPa, and 44.36 MPa, which are 19.9%, 10.7% and 7.8% higher than that of the plain EP, respectively. Correspondingly the maximum elongations at break of the three composites are 0.92%, 0.82% and 0.46% higher than that of the plain EP, respectively. Besides the composite material prepared by filling the powder with good modification effect show better heat resistance performance.

Key words:  composite      optical fiber preform waste      silane coupling agent      epoxy resin      tensile properties      thermal stability     
Received:  15 July 2019     
ZTFLH:  TB332  
Fund: Open Fund of State Key Laboratory of Optical Fiber and Cable Preparation Technology of Changfei Optical Fiber and Cable Co., Ltd(SKLD1501);Hubei Key Laboratory of Coal Conversion and New Carbon Materials(WKDM201306)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.348     OR     https://www.cjmr.org/EN/Y2020/V34/I1/57

Fig.1  Contact angle of powder pressed sheet with pure water
Fig.2  FT-IR spectrum of powder samples
Fig.3  SEM images of different powder samples (a) unmodified powder, (b) KH-570/SiO2, (c) A-151/SiO2
Fig.4  Schematic diagram of KH-570 and A-151 modified powder particles
Fig.5  Relationship between tensile strength and powder content of composites
Fig.6  Schematic diagram of silane coupling agent to improve the compatibility of waste particles with EP
Fig.7  Relationship between elongation at break and powder content of composites
Fig.8  TG curve of composite materials
CompositeWeight loss rate
5%10%20%50%
Unmodified powder /EP310.2℃337.8℃352.2℃378.2℃
KH-570/SiO2/EP327.1℃341.5℃354.4℃379.6℃
A-151/SiO2/EP329.1℃343.8℃357.2℃383.4℃
Table 1  Temperature of composite materials under different weight loss rates
Fig.9  DTG curve of composite materials
[1] Cheng P, Wang D Z. Epoxy Resin and Its Application [M]. Beijing: Chemical Industry Press, 2006.
[1] (陈 平, 王德中. 环氧树脂及其应用 [M]. 北京: 化学工业出版社, 2006)
[2] Wu S W, Li Y Y, Chen G R, et al. Epoxy composites modified with POSS-containing block copolymer [J]. Polymer Materials Science and Engineering, 2018, 34(4): 14
[2] (吴顺伟, 李远源, 陈国荣等. POSS嵌段共聚物改性环氧树脂 [J]. 高分子材料科学与工程, 2018, 34(4): 14)
[3] Yang G Q, Guo Y, Wang D Y, et al. Dielectric characteristics of epoxy composites modified with nano ZnO in non-uniform electrical field [J]. High Voltage Engineering, 2017, 43(9): 2825
[3] (杨国清, 郭 玥, 王德意等. 不均匀电场下纳米氧化锌改性环氧树脂的绝缘特性 [J]. 高压电技术, 2017, 43(9): 2825)
[4] Li J W, Wu Z X, Huang C J, et al. Mechanical properties of cyanate ester/epoxy resins reinforced with functionalized multi-wall carbon nanotubes [J]. Chinese Journal of Materials Research, 2014, 28(8): 561
[4] (李静文, 吴智雄, 黄传军等. 多壁碳纳米管改性氰酸酯/环氧树脂基纳米复合材料的力学性能 [J]. 材料研究学报, 2014, 28(8): 561)
[5] Ji G Z, Zhu H Q, Jiang X W, et al. Mechanical strengths of epoxy resin composites reinforced by calcined pearl shell powders [J]. Journal of Applied Polymer Science,2009, 114: 3168
[6] Chen Y F, Zhang X, Sun J L, et al. Properties of epoxy resin adhesive modified by nano-TiO2 [J]. Journal of Jiangsu University: Natural Science Edition, 2013, 34(3): 335
[6] (陈宇飞, 张 旭, 孙佳林等. 二氧化钛改性环氧树脂胶黏剂的性能 [J]. 江苏大学学报(自然科学版), 2013, 34(3): 335)
[7] Xu C, Qu T G, Zhang X J, et al. Enhanced toughness and thermal conductivity for epoxy resin with a core-shell structured polyacrylic modifier and modified boron nitride. [J]. Royal Society of Chemistry, 2019, 9: 8654
[8] Song D L, Liu S Q, Li F, et al. Effects of silane-modified nano ZrO2 on the corrosion resistance of epoxy coating on the surface of Mg-Li alloy. [J]. Chemical Journal of Chinese Universities, 2017, 38(1): 77
[8] (宋大雷, 刘思齐, 李 丰等. 硅烷改性纳米ZrO2对镁锂合金表面环氧树脂涂层耐蚀性能的影响 [J]. 高等学校化学学报, 2017, 38(1): 77)
[9] Wang Y Y, Wang S Y, Lu G J, et al. Influence of nano-AlN modification on the insulation properties of epoxy resin of dry-type transformers [J]. Transactions of China Electrotechnical Society, 2017, 32(7): 174
[9] (王有元, 王施又, 陆国俊等. 纳米AlN改性对干式变压器环氧树脂绝缘性能的影响 [J]. 电工技术学报, 2017, 32(7): 174)
[10] Song Q C, Zhou Z, Yang C G, et al. Curing kinetics of epoxy resin modified with nano-particles and surface strength properties and friction coefficient [J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 512
[10] (宋起超, 周 真, 杨春光. 纳米改性环氧树脂固化反应及表面与摩擦性能 [J]. 北京航空航天大学学报, 2013, 39(4): 512)
[11] Zhang R L, Liu Y S, Jin Y X. Preparation of EP/ZnO composites with needle nano ZnO and its mechanical properties [J]. Journal of Materials Engineering, 2011, 12: 78
[11] (张荣良, 柳亚输, 金云学. 针状纳米ZnO制备EP/ZnO复合材料及其力学性能的研究 [J]. 材料工程, 2011, 12: 78)
[12] Meng S S, Wang Y, Zhang B M. Preparation and mechanical properties of MWCNTs modified glass fiber [J]. Acta Materiae Compositae Sinica, 2015, 32(4): 989
[12] (孟姗姗, 王 洋, 张博明. 静电植绒法处理多壁碳纳米管改性玻纤织物/环氧树脂复合材料的制备及力学性能 [J]. 复合材料学报, 2015, 32(4): 989)
[13] Gao P Z, Lin M Q, Lin H J, et al. Study on the properties of nano-SiO2 modified epoxy composites [J]. Journal of Hunan University: Natural Science Edition, 2015, 42(6): 1
[13] (高朋召, 林明清, 林海军等. 纳米二氧化硅改性环氧树脂复合材料的性能研究 [J]. 湖南大学学报(自然科学版), 2015, 42(6): 1)
[14] Shi C Y, Ding J K, Wang J F, et al. Research on properties of EVA composites filled with modified optical fiber preform waste powder [J]. Inorganic Chemicals Industry, 2018, 50(10): 58
[14] (石从云, 丁家坤, 王金峰等. 改性的光棒废料粉末填充EVA的复合材料性能研究 [J]. 无机盐工业, 2018, 50(10): 58)
[15] Su X. Effect of coupling agent with different non-hydronlytic groups on performance of modified SiO2/PDMS membrane [D]. Haerbin: Northeast Forestry University, 2017
[15] (苏 醒. 偶联剂非水解基团对改性SiO2/PDMS膜性能影响的研究 [D]. 哈尔滨: 东北林业大学, 2017)
[16] Shan S Y, Cheng P X, Yu X Y, et al. Properties of epoxy resin toughened by adding micro-SiO2 particles [J]. Chinese Journal of Colloid & Polymer, 2016, 34(1): 7
[16] (单书燕, 程品潇, 于晓燕等. 超细二氧化硅微粉增韧改性环氧树脂的研究 [J]. 胶体与聚合物, 2016, 34(1): 7)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[8] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[9] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!