Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (1): 64-72    DOI: 10.11901/1005.3093.2019.359
ARTICLES Current Issue | Archive | Adv Search |
Embedded Co-cured High Damping and Electromagnetic Absorbing Composite
CHEN Xinle,LIANG Sen(),YAN Shengyu,ZHENG Changsheng,WANG Ling
School of Mechanical and Automotive Engineering, Qingdao Technological University, Qingdao 266520, China
Cite this article: 

CHEN Xinle,LIANG Sen,YAN Shengyu,ZHENG Changsheng,WANG Ling. Embedded Co-cured High Damping and Electromagnetic Absorbing Composite. Chinese Journal of Materials Research, 2020, 34(1): 64-72.

Download:  HTML  PDF(4229KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A multi-layered electromagnetic absorbing composite was proposed to have the structure composed alternately of absorbing prepreg layer and absorbing damping layer, thus the embedded co-curing composite with excellent electromagnetic absorbing property and high damping property as well as other excellent static and dynamic properties was developed. The theoretical expression of the electromagnetic reflection loss of the structure was deduced, and the absorbing performance of the structure was theoretically analyzed by using MATLAB program based on the theoretical expression. The electromagnetic absorbing test verified the validity of the theoretical results. Modal test, free decay test and interlinear shear test obtained the variation curve of modal parameters, damping performance and interlamellar shear performance with the content of electromagnetic absorbing material. The experimental data show that with the increase of the content of electromagnetic absorbing materials in the composite, of which the reflection loss and the modal natural frequency decrease, the electromagnetic absorption bandwidth, the modal damping ratio and the damping loss factor increase, whereas, the interlamellar shear stress enhances.

Key words:  composite      absorbing properties      modal parameters      damping loss factor      interlamellar shear     
Received:  18 July 2019     
ZTFLH:  V258  
Fund: National Natural Science Foundation of China(51375248);National Natural Science Foundation of Shandong Province(ZR2019MEE08)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.359     OR     https://www.cjmr.org/EN/Y2020/V34/I1/64

Fig.1  Structure of damping absorbing composite
LayerEpoxy resinE glass fiberDamping materialFe3O4La2O3
14545000
2001500
34545000
4001500
54545000
6001500
74545000
8001500
94545000
10001500
114545000
Table 1  Ingredient of specimen1 (mass fraction, %)
LayerEpoxy resinE glass fiberDamping materialFe3O4La2O3
14545050
2001561.2
34545060
4001571.4
54545070
6001581.6
74545080
8001591.8
94545090
100015102
1145450100
Table 2  Ingredient of specimen 2 (mass fraction, %)
LayerEpoxy resinE glass fiberDamping materialFe3O4La2O3
14545060
2001571.4
34545070
4001581.6
54545080
6001591.8
74545090
80015102
945450100
100015112.2
1145450110
Table 3  Ingredient of specimen 3 (mass fraction, %)
LayerEpoxy resinE glass fiberDamping materialFe3O4La2O3
14545070
2001581.6
`34545080
4001591.8
54545090
60015102
745450100
80015112.2
945450110
100015122.4
1145450120
Table 4  Ingredient of specimen 4 (mass fraction, %)
LayerEpoxy resinE glass fiberDamping materialFe3O4La2O3
14545080
2001591.8
34545090
40015102
545450100
60015112.2
745450110
80015122.4
945450120
100015132.6
1145450130
Table 5  Ingredient of specimen 5 (mass fraction, %)
LayerEpoxy resinE glass fiberDamping materialFe3O4La2O3
14545090
20015102
345450100
40015112.2
545450110
60015122.4
745450120
80015132.6
945450130
100015142.8
1145450140
Table 6  Ingredient of specimen 6 (mass fraction, %)
IngredientMass ratio
HNBR4367100
N22040
ZnO5
SA1
N4451.5
TMTD0.8
S5.5
CZ0.5
101030
Table 7  Ingredient of viscoelastic damping material (mass fraction, %)
Fig.2  Co-curing process curve
Fig.3  The plates of ECDEAC
Fig.4  Absorbing test system
Fig.5  Modal test system
Fig.6  Shear test piece size and test system
Fig.7  Reflection loss of theoretical curves
Fig.8  Reflection loss of test curves
SpecimenFirst modalSecond modalThird modal

Modal

frequency

/Hz

Modal

Damping ratio/%

Modal

frequency

/Hz

Modal

damping ratio /%

Modal

frequency

/Hz

Modal

damping ratio /%

163.934.12680.652.982289.491.382
257.255.22873.623.757251.382.234
355.285.44171.323.925242.262.356
453.655.60369.324.177234.212.603
552.395.75167.464.211227.062.751
651.205.87265.864.309220.692.869
Table 8  Modal test result
Fig.9  Modal parameter change diagram
Specimen123456
1#/%6.3668.3137.9348.3389.9449.928
2#/%6.4137.5028.7339.1678.9629.038
3#/%7.1887.8278.2689.2359.3319.634
4#/%7.2818.4868.8938.6928.3278.628
Average value/%6.8128.0328.4578.8589.1419.307
Discrete coefficient0.0620.0490.0450.0410.0640.054
Table 9  Damping loss factor of different specimens
Fig.10  Variation curves of damping loss factor
Specimen123456
1#/%300628653461377538354163
2#/%275031263152380639214207
3#/%301528973369354941824352
4#/%263832333485382739164143
5#/%284131343268361341514405
Average value/N285030513347371440014254
Discrete coefficient0.0510.0470.0370.0300.0350.025
Table 10  Interlaminar shear force of different Specimens
Fig.11  Shear force variation curves
Fig.12  Interlaminar shear stress variation curves
Fig.13  Sectional microscopic SEM image of absorbing damping layer
[1] Liang S, Liang L, Mi P. New development of damping structure of embedded co cured composites [J]. Journal of Applied Mechanics, 2005, 27(4): 767
[1] (梁森, 梁磊, 米鹏. 嵌入式共固化复合材料阻尼结 构的新进展 [J]. 应用力学学报, 2005, 27(4): 767)
[2] Gibson R F. A review of recent research on mechanics of multifunctional composite materials and structures [J]. Composite Structures, 2010, 92(12): 27
[3] Agnese F, Scarpa F. Macro-composites with star-shaped inclusions for vibration damping in wind turbine blades [J]. Composite Structures, 2014, 108(1): 978
[4] Zheng C S, Liang S. Low-temperature co-cured High Damping Composites [J]. Acta Aeronautical et Astronautic Sonica, 2019, 15(8): 38
[4] (郑长升, 梁 森. 低温共固化高阻尼复合材料 [J]. 航空学报,2019, 15(8): 38)
[5] Pan L J, Zhang B M. Damping and mechanical properties of co-cured composite laminates with embedded per-forate viscoelastic layer [J]. Journal of Materials science and Technology, 2009, 25(4): 543
[6] Ni N N, Wen Y F, He D L, et al. High damping and high stiffness CFRP composites with aramid non-woven fabric interlayers [J]. Composites Science & Technology, 2015, 117: 92
[7] Pan L J. Study of performance and optimum design of cocured composite laminates with embedded viscoelastic layer [D]. Harbin: Harbin Institute of Technology, 2009
[7] (潘利剑. 粘弹阻尼层共固化复合材料的性能研究与优化设计 [D]. 哈尔滨: 哈尔滨工业大学, 2009)
[9] Biggerstaff J M, Kosmatka J B. Damping performance of co-cured graphite/epoxy composite laminates with embedded damping materials [J]. Journal of Compo-sites Materials, 1999, 33(15): 57
[10] Zhang M. Analysis of absorbing characteristics of isotropic resin matrix composites [D]. Harbin: Harbin Engineering University, 2011
[10] (张 鸣. 各向同性树脂基多层复合材料吸波特性分析 [D]. 哈尔滨: 哈尔滨工程大学, 2011)
[11] Xiong B. Calculation and experimental study on reflectance of multilayer composite absorbing materials containing FSS structure [D]. Wuhan: Huazhong University of Science and Technology, 2013
[11] (熊 波. 含FSS结构的多层复合吸波材料反射率计算与实验研究 [D]. 武汉: 华中科技大学, 2013)
[12] Wang Z Q. Study on microwave absorbing properties of grapheme loaded rare earth oxide and its rubber composites [D]. Taiyuan: North University of China, 2018
[12] (王中奇. 石墨烯负载稀土氧化物及其橡胶复合材料吸波性能的研究 [D]. 太原: 中北大学, 2018)
[13] Wan D. Design and preparation of multilayer composite broadband absorbing structure [D]. Wuhan: Huazhong University of Science and Technology, 2015
[13] (万 东. 多层复合宽带吸波结构的设计与制备 [D]. 武汉: 华中科技大学, 2015)
[14] Zhao H T, Ma R T. Nano-nickel Ferrite Composite Absorbing Material [M]. Beijing: Chemical Industry Press, 2013
[14] (赵海涛, 马瑞廷. 纳米镍铁氧体复合吸波材料 [M]. 北京: 化学工业出版社, 2015)
[15] Suzuki K, Kageyama K, Kimpara I, et a1.Vibration and damping prediction of laminates with constrained viscoelastic layers--numerical analysis by a multilayer higher-order-deformable finite element and experimental observations [J]. Mechanics of Advanced Materials and Structures,2003, 10(3): 43
[16] Zhang S H, Chen H L. A study on the damping characteristics of laminated composites with integral viscoelastic layers [J]. Composite Structures, 2006, 74(1): 63
[17] Liang S, Liang K Y, Luo L. Study on low-velocity impact of embedded and co-cured composite damping panels with numerical simulation method [J]. Composite Structures, 2014, 107(1): 1
[18] Liang S, Zhang Z S, Mi P. Sound insulation characteristics of the embedded and co-cured composite damping structures [J]. Advanced Materials Research, 2012, 487: 598
[19] Lin G X, Ding L, Zhang M X. Study on co-cure processing and performance for carbon fiber-composite constrained damping structure [J]. Development and Application of Materials, 2017, 32 (6): 110
[19] (林国兴, 丁 亮, 张明霞. 碳纤复合约束阻尼结构共固化成型及其性能研究 [J]. 材料开发与应用, 2017, 32(6): 110)
[20] Jiang X. Study on mechanical properties and damping properties of nitrile rubber filled with different fillers [J]. Chinese Journal of Colloid and Polymer, 2014, 32(2): 58
[20] (江学良. 不同填料填充丁腈橡胶力学性能和阻尼性能的研究 [J]. 胶体与聚合物, 2014, 32(2): 58)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!